相關(guān)習(xí)題
 0  233953  233961  233967  233971  233977  233979  233983  233989  233991  233997  234003  234007  234009  234013  234019  234021  234027  234031  234033  234037  234039  234043  234045  234047  234048  234049  234051  234052  234053  234055  234057  234061  234063  234067  234069  234073  234079  234081  234087  234091  234093  234097  234103  234109  234111  234117  234121  234123  234129  234133  234139  234147  266669 

科目: 來源: 題型:解答題

12.(1)已知二次函數(shù)y=f(x)滿足:f(0)=0且f(x+1)=f(x)+2x+5,求f(x)的解析式;
(2)若f(-2x)+2f(2x)=3x-2,求f(x)的解析式.

查看答案和解析>>

科目: 來源: 題型:填空題

11.下列命題中:
(1)若集合A={x|kx2+4x+4=0}中只有一個(gè)元素,則k=1;
(2)已知函數(shù)y=f(3x)的定義域?yàn)閇-1,1],則函數(shù)y=f(x)的定義域?yàn)椋?∞,0];
(3)方程2|x|=log2(x+2)+1的實(shí)根的個(gè)數(shù)是2.
(4)已知f(x)=x5+ax3+bx-8,若f(-2)=8,則f(2)=-8;
(5)已知2a=3b=k(k≠1)且$\frac{1}{a}+\frac{2}=1$,則實(shí)數(shù)k=18;
其中正確命題的序號(hào)是(3)(5).(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目: 來源: 題型:解答題

10.在四棱錐P-ABCD中,AD∥BC,∠ABC=∠APB=90°,點(diǎn)M是線段AB上的一點(diǎn),且PM⊥CD,AB=BC=2PB=2AD=4BM.
(1)證明:面PAB⊥面ABCD;
(2)求直線CM與平面PCD所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.如果實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{2x-y≥0}\\{x+2y-2≥0}\\{x-1≤0}\end{array}\right.$,則z=x+y的最小值為(  )
A.1B.$\frac{6}{5}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目: 來源: 題型:填空題

8.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,有如下命題:
①若sin2A=sin2B,則△ABC為等腰三角形;
②若a=2,b=5,A=$\frac{π}{6}$,則△ABC有兩組解;
③定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),f(x)在[-5,-4]上為增函數(shù),若A>B,則f(sinA)>f(sinB).
其中正確命題的序號(hào)是③.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3^{x+1}}(x≤0)\\ \frac{1}{x-1}(x>0)\end{array}$若f(x)≥1的解集為[-1,0]∪(1,2].

查看答案和解析>>

科目: 來源: 題型:選擇題

6.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若a1=1,公差d=2,Sn+2-Sn=36,則n=( 。
A.8B.7C.6D.5

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知$\overline{a}$=(-1,2),$\overrightarrow$=(m2-2,2m),若$\overrightarrow{a}$與$\overrightarrow$共線且方向相反,則m的值為(  )
A.1 或-2B.2C.-2D.-1或2

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖,D是Rt△BAC斜邊BC上的一點(diǎn),AC=$\sqrt{3}$DC.
(1)若BD=2DC=2,求AD的長.
(2)若AB=AD,求角B.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.在直角三角形ABC中,角C為直角,且AC=BC=2,點(diǎn)P是斜邊上的一個(gè)三等分點(diǎn),則$\overrightarrow{CP}•\overrightarrow{CB}+\overrightarrow{CP}•\overrightarrow{CA}$=(  )
A.0B.4C.$\frac{9}{4}$D.-$\frac{9}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案