相關(guān)習(xí)題
 0  234423  234431  234437  234441  234447  234449  234453  234459  234461  234467  234473  234477  234479  234483  234489  234491  234497  234501  234503  234507  234509  234513  234515  234517  234518  234519  234521  234522  234523  234525  234527  234531  234533  234537  234539  234543  234549  234551  234557  234561  234563  234567  234573  234579  234581  234587  234591  234593  234599  234603  234609  234617  266669 

科目: 來源: 題型:選擇題

5.已知集合$A=\left\{{\left.x\right|\frac{x}{x-1}≥0,x∈R}\right\},B=\left\{{\left.y\right|y=3{x^2}+1,x∈R}\right\}$,則A∩B=(  )
A.(1,+∞)B.[1,+∞)C.(-∞,0]∪(1,+∞)D.[0,1]

查看答案和解析>>

科目: 來源: 題型:選擇題

4.復(fù)數(shù)$z=\frac{2}{1+i}$的虛部(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目: 來源: 題型:解答題

3.設(shè)f(x)是定義在R上的函數(shù),對任意實數(shù)m,n,都有f(m)f(n)=f(m+n),且當x<0時,0<f(x)<1.
(1)證明:①f(0)=1;②當x>0時,f(x)>1;③f(x)是R上的增函數(shù);
(2)設(shè)a∈R,試解關(guān)于x的不等式f(x2-3ax+1)f(-3x+6a+1)≤1.

查看答案和解析>>

科目: 來源: 題型:解答題

2.求值:
(1)${({0.064})^{-\frac{1}{3}}}-{({-\frac{5}{9}})^0}+{[{{{({-2})}^3}}]^{-\frac{4}{3}}}+{16^{-0.75}}$;
(2)設(shè)3x=4y=36,求$\frac{2}{x}+\frac{1}{y}$的值.

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知函數(shù)f(x)=lg$\frac{1+ax}{1-2x}({a>0})$是奇函數(shù),則函數(shù)$g(x)={log_{\frac{1}{a}}}({{x^2}-6x+5})$的單調(diào)遞減區(qū)間是(5,+∞).

查看答案和解析>>

科目: 來源: 題型:解答題

20.在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=bcosC+$\frac{\sqrt{3}}{3}$csinB.
(1)若a=2,b=$\sqrt{7}$,求c
(2)設(shè)函數(shù)y=$\sqrt{3}$sin(2A-30°)-2sin2(C-15°),求y的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

19.在數(shù)列{an}中,前n項和為Sn,且Sn=$\frac{n(n+1)}{2}$,數(shù)列{bn}的前n項和為Tn,且bn=$\frac{{a}_{n}}{{2}^{n}}$
(1)求數(shù)列{an}的通項公式;
(2)是否存在m,n∈N*,使得Tn=am,若存在,求出所有滿足題意的m,n,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

18.在直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,點A的極坐標為(3,$\frac{π}{2}$),點B的極坐標為(6,$\frac{π}{6}$),曲線C:(x-1)2+y2=1
(1)求曲線C和直線AB的極坐標方程;
(2)過點O的射線l交曲線C于M點,交直線AB于N點,若|OM||ON|=2,求射線l所在直線的直角坐標方程.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知正項等比數(shù)列{an}的前n項積為πn,已知am-1•am+1=2am,π2m-1=2048,則m=6.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知向量$\overrightarrow{a},\overrightarrow$夾角為60°,且|$\overrightarrow{a}$|=1,|2$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{7}$,則|$\overrightarrow$|=3.

查看答案和解析>>

同步練習(xí)冊答案