相關(guān)習題
 0  236417  236425  236431  236435  236441  236443  236447  236453  236455  236461  236467  236471  236473  236477  236483  236485  236491  236495  236497  236501  236503  236507  236509  236511  236512  236513  236515  236516  236517  236519  236521  236525  236527  236531  236533  236537  236543  236545  236551  236555  236557  236561  236567  236573  236575  236581  236585  236587  236593  236597  236603  236611  266669 

科目: 來源: 題型:解答題

17.已知數(shù)列{an}中,其前n項和Sn滿足Sn=3an-2(n∈N*
(1)求證:數(shù)列{an}為等比數(shù)列,并求{an}的通項公式;
(2)設(shè)bn=(n+1)•an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

16.在△ABC中,若$asinBcosC+csinBcosA=\frac{1}{2}b$,且a>b,
(1)求角B的大小;
(2)若$b=\sqrt{13},a+c=4$,求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)f(x)=xlnx+x2-ax+2(a∈R)有兩個不同的零點x1,x2
(1)求實數(shù)a的取值范圍;
(2)求證:x1•x2>1.

查看答案和解析>>

科目: 來源: 題型:解答題

14.△ABC的三個內(nèi)角A,B,C的對邊分別是a,b,c,$\frac{cosA-2cosC}{cosB}=\frac{2c-a}$.
(1)若C=A+$\frac{π}{3}$,求角A的大小;
(2)若cosB=$\frac{1}{4}$,△ABC的周長為5,求b的值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.拋物線C:y2=2px(p>0)的焦點為F,拋物線C上點M的橫坐標為1,且|MF|=$\frac{5}{4}$.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過焦點F作兩條相互垂直的直線,分別與拋物線C交于M、N和P、Q四點,求四邊形MPNQ 面積的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.一次考試中,5名學生的數(shù)學、物理成績?nèi)缦拢?br />
學生A1A2A3A4A5
數(shù)學x(分)8991939597
物理y(分)8789899293
求y關(guān)于x的線性回歸方程.
附:回歸直線的斜率和截距的最小二乘估計公式分別為$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知曲線C:$\left\{\begin{array}{l}{x=3\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)),直線l:ρ(cosθ-$\sqrt{3}$sinθ)=12.
(Ⅰ)求直線l的直角坐標方程及曲線C的普通方程;
(Ⅱ)設(shè)點P在曲線C上,求點P到直線l的距離的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

10.從區(qū)間[0,1]內(nèi)任取兩個數(shù)x,y,則x+y≤1的概率為$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.如圖,設(shè)拋物線y2=4x的焦點為F,不經(jīng)過焦點的直線上有三個不同的點A,B,C,其中點A,B在拋物線上,點C在x軸上,記△BCF的面積為S1,△ACF的面積為S2,則$\frac{{S}_{1}^{2}}{{S}_{2}^{2}}$等于是(  )
A.$\frac{{|{BF}|-1}}{{|{AF}|-1}}$B.$\frac{{{{|{BF}|}^2}-1}}{{{{|{AF}|}^2}-1}}$C.$\frac{{|{BF}|+1}}{{|{AF}|+1}}$D.$\frac{{{{|{BF}|}^2}+1}}{{{{|{AF}|}^2}+1}}$

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=(ax-1)ex,a∈R.
(Ⅰ)討論f(x)的單調(diào)區(qū)間;
(Ⅱ)當m>n>0時,證明:men+n<nem+m.

查看答案和解析>>

同步練習冊答案