相關習題
 0  236694  236702  236708  236712  236718  236720  236724  236730  236732  236738  236744  236748  236750  236754  236760  236762  236768  236772  236774  236778  236780  236784  236786  236788  236789  236790  236792  236793  236794  236796  236798  236802  236804  236808  236810  236814  236820  236822  236828  236832  236834  236838  236844  236850  236852  236858  236862  236864  236870  236874  236880  236888  266669 

科目: 來源: 題型:選擇題

6.已知復數(shù)$z=\frac{2+i}{1-i}$(i為虛數(shù)單位),那么z的共軛復數(shù)為( 。
A.$\frac{3}{2}+\frac{3}{2}i$B.$\frac{1}{2}-\frac{3}{2}i$C.$\frac{1}{2}+\frac{3}{2}i$D.$\frac{3}{2}-\frac{3}{2}i$

查看答案和解析>>

科目: 來源: 題型:選擇題

5.若集合M={x|log2x<1},集合N={x|x2-1≤0},則M∩N=(  )
A.{x|1≤x<2}B.{x|-1≤x<2}C.{x|-1<x≤1}D.{x|0<x≤1}

查看答案和解析>>

科目: 來源: 題型:解答題

4.數(shù)列{an}的前n項和為Sn,Sn=2an-n(n∈N*).
(1)求證:數(shù)列{an+1}成等比數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)數(shù)列{an}中是否存在連續(xù)三項可以構(gòu)成等差數(shù)列?若存在,請求出一組適合條件的三項;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

3.如圖,在直角梯形AA1B1B中,∠A1AB=90°,A1B1∥AB,AB=AA1=2A1B1=2,直角梯形AA1C1C通過直角梯形AA1B1B以直線AA1為軸旋轉(zhuǎn)得到,且使得平面AA1C1C⊥平面AA1B1B.點M為線段BC的中點,點P是線段BB1中點.
(Ⅰ)求證:A1C1⊥AP;
(Ⅱ)求二面角P-AM-B的余弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.用數(shù)學歸納法證明不等$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}>\frac{11}{24}({n∈{N^*}})$式的過程中,由n=k遞推到n=k+1時,下列說法正確的是( 。
A.增加了一項$\frac{1}{{2({k+1})}}$B.增加了兩項$\frac{1}{2k+1}$和$\frac{1}{{2({k+1})}}$
C.增加了B中兩項,但又少了一項$\frac{1}{k+1}$D.增加了A中一項,但又少了一項$\frac{1}{k+1}$

查看答案和解析>>

科目: 來源: 題型:選擇題

1.雙曲線$\frac{x^2}{m}-\frac{y^2}{n}=1({m>0,n>0})$和橢圓$\frac{x^2}{a}+\frac{y^2}=1({a>b>0})$有相同的焦點F1,F(xiàn)2,M為兩曲線的交點,則|MF1|•|MF2|等于( 。
A.a+mB.b+mC.a-mD.b-m

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知函數(shù)f(x)=3sin(ωx+ϕ)$(ω>0,|ϕ|≤\frac{π}{2})$的部分圖象如圖所示,A,B兩點之間的距離為10,且f(2)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)的單位長度后所得函數(shù)圖象關于y軸對稱,則t的最小值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

19.以(1,0),(-1,0)為焦點的橢圓與y=x-2有公共點,則該橢圓離心率的最大值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

18.從裝有紅球、白球和黑球各2個的口袋內(nèi)一次取出2個球,則與事件“兩球都為白球”互斥而非對立的事件是以下事件“①兩球都不是白球;②兩球恰有一白球;③兩球至少有一個白球;④兩球至多有一個白球”中的哪幾個?( 。
A.①②④B.①②③C.①③D.①②

查看答案和解析>>

科目: 來源: 題型:選擇題

17.設p:x<4,q:1<x<4,則p是q成立的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既充分也不必要條件

查看答案和解析>>

同步練習冊答案