相關(guān)習(xí)題
 0  237650  237658  237664  237668  237674  237676  237680  237686  237688  237694  237700  237704  237706  237710  237716  237718  237724  237728  237730  237734  237736  237740  237742  237744  237745  237746  237748  237749  237750  237752  237754  237758  237760  237764  237766  237770  237776  237778  237784  237788  237790  237794  237800  237806  237808  237814  237818  237820  237826  237830  237836  237844  266669 

科目: 來源: 題型:解答題

13.從某地區(qū)一次中學(xué)生知識競賽中,隨機(jī)抽取了30名學(xué)生的成績,繪成如圖所示的2×2列聯(lián)表:
優(yōu)秀一般合計
男生76
女生512
合計
(1)試問有沒有90%的把握認(rèn)為優(yōu)秀一般與性別有關(guān);
(2)用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的中學(xué)(人數(shù)很多)中隨機(jī)抽取3人,用ξ表示所選3人中優(yōu)秀的人數(shù),試寫出ξ的分布列,并求出ξ的數(shù)學(xué)期望,.${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d
獨(dú)立性檢驗臨界表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目: 來源: 題型:解答題

12.在△ABC中,角A,B,C的對邊分別為a,b,c,已知ccosB=(2a-b)cosC.
(1)求角C的大小;
(2)若AB=4,求△ABC的面積S的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知定義在R上的函數(shù)f(x)滿足:f(x)+xf'(x)>0恒成立,若a=3f(3),b=f(1),c=2f(2)則( 。
A.a>c>bB.c>b>aC.c>a>bD.a>b>c

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=x2-2ax+4
(1)求函數(shù)y=f(x),x∈[0,2]的最小值
(2)若對任意x1,x2∈[0,2],都有|f(x1)-f(x2)|<4恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

9.8月27日我校組織了高一學(xué)生拉練活動,步行路線如圖:A→B→C→D→E→F→A(A是學(xué)校,BCDF為矩形,AB=BF=2km,BC=4km),步行勻速前進(jìn),速度4km/h,拉練過程中在DF的中點(diǎn)E處休息了半小時,從學(xué)校A點(diǎn)出發(fā)開始計時,經(jīng)過t小時到達(dá)P點(diǎn),P到A的直線距離為|PA|,設(shè)y=|PA|2
(1)寫出y關(guān)于t的函數(shù)的定義域、值域.
(2)寫出y關(guān)于t的函數(shù)表達(dá)式.

查看答案和解析>>

科目: 來源: 題型:解答題

8.定義在R上的函數(shù)f(x),恒有f(-x)+f(x)=0,且對任意x1,x2∈R有(x1-x2)[f(x1)-f(x2)]<0成立.若對t∈[0,2]均有f(2t2-4)+f(4m-2t)≥f(0)成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時,f(x)的表達(dá)式是二次函數(shù),且f(1)=0,f(3)=0,f(2)=-1.
(1)求f(x),x∈(0,+∞)的表達(dá)式
(2)畫函數(shù)y=f(x),x∈R的圖象
(3)說出函數(shù)y=f(x),x∈(-5,-1]的值域.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.“m=1”是“函數(shù)f(x)=x2-6mx+6在區(qū)間(-∞,3]上為減函數(shù)”的( 。
A.充分必要條件B.既不充分又不必要條件
C.充分不必要條件D.必要不充分條件

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知全集為U=R,集合B={x|($\frac{1}{2}$)x≤1},A={x|x≥2},則(∁UA)∩B=(  )
A.[0,2)B.[0,2]C.(1,2)D.(1,2]

查看答案和解析>>

科目: 來源: 題型:填空題

4.在△ABC中,AB=2,∠A=60°,點(diǎn)D滿足$\overrightarrow{CD}$=2$\overrightarrow{DB}$,且AD=$\frac{\sqrt{37}}{3}$,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.

查看答案和解析>>

同步練習(xí)冊答案