相關(guān)習(xí)題
 0  238057  238065  238071  238075  238081  238083  238087  238093  238095  238101  238107  238111  238113  238117  238123  238125  238131  238135  238137  238141  238143  238147  238149  238151  238152  238153  238155  238156  238157  238159  238161  238165  238167  238171  238173  238177  238183  238185  238191  238195  238197  238201  238207  238213  238215  238221  238225  238227  238233  238237  238243  238251  266669 

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=|x|,g(x)=m-|x-3|.
(1)解關(guān)于的不等式g(f(x))+1-m>0;
(2)已知c>0,f(a)<c,f(b)<c,求證:$\frac{f(a+b)}{f({c}^{2}+ab)}$<$\frac{1}{c}$.

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P(3,$\frac{5}{2}$)為雙曲線上一點(diǎn),若△PF1F2的內(nèi)切圓的半徑為1,則雙曲線的方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

科目: 來源: 題型:填空題

2.若P為圓(x-2)2+y2=1上的動(dòng)點(diǎn),則點(diǎn)P到直線l:x-y+2=0的最短距離為2$\sqrt{2}$-1.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ln(-x),x<0}\\{\frac{x}{{e}^{x-1}}.x≥0}\end{array}\right.$,若方程[f(x)]2+mf(x)-m(m+1)=0有四個(gè)不等的實(shí)數(shù)根,則m的取值范圍是(  )
A.-1≤m<$\frac{4}{5}$B.m≤-1或m>1C.m=-1或m>1D.m=-1或0<m<1

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)(1,$\frac{\sqrt{3}}{2}$),橢圓的左、右頂點(diǎn)分別為A1,A2,點(diǎn)P坐標(biāo)為(4,0),|PA1|,|A1A2|,|PA2|成等差數(shù)列.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)橢圓內(nèi)部是否存在一個(gè)定點(diǎn),過此點(diǎn)的直線交橢圓于M,N兩點(diǎn),且$\overrightarrow{PM}$•$\overrightarrow{PN}$=12恒成立,若存在,求出此點(diǎn),若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知tanθ=2,則sinθcosθ=$\frac{2}{5}$.

查看答案和解析>>

科目: 來源: 題型:解答題

18.?dāng)?shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和為Sn,滿足${S}_{n}^{2}$=an(Sn-$\frac{1}{2}$).
(Ⅰ)求證:數(shù)列{$\frac{1}{{S}_{n}}$}是等差數(shù)列,并求Sn的表達(dá)式;
(Ⅱ)設(shè)bn=$\frac{{S}_{n}}{2n+1}$,數(shù)列{bn}的前n項(xiàng)和為Tn,不等式Tn≥$\frac{1}{18}$(m2-5m)對(duì)所有的n∈N*恒成立,求正整數(shù)m的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知焦點(diǎn)在x軸上的橢圓E:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{^{2}}$=1(b>0)
(1)若0<b≤2,求離心率e的取值范圍;
(2)橢圓E內(nèi)含圓C:x2+y2=$\frac{8}{3}$.圓C的切線l與橢圓E交于A,B兩點(diǎn),滿足$\overrightarrow{OA}⊥\overrightarrow{OB}$(O為坐標(biāo)原點(diǎn)).
①求b2的值;
②求△ABC面積的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

16.某農(nóng)場(chǎng)所對(duì)冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了2017年2月1日至2月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如表:
日期2月1日2月2日2月3日2月4日2月5日
溫差x(°C)101113128
發(fā)芽數(shù)x(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的兩組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(Ⅱ)若選取的是2月1日與2月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)2月2日至2月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;可以預(yù)報(bào)當(dāng)溫差為20℃時(shí),種子發(fā)芽數(shù).
附:回歸直線方程:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$;$\stackrel{∧}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知圓C:x2+(y-4)2=4,直線l過點(diǎn)(-2,0).
(1)當(dāng)直線l與圓C相切時(shí),求直線l的一般式方程;
(2)當(dāng)直線l與圓C相交于A、B兩點(diǎn),且|AB|≥2$\sqrt{2}$時(shí),求直線l斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案