相關習題
 0  238185  238193  238199  238203  238209  238211  238215  238221  238223  238229  238235  238239  238241  238245  238251  238253  238259  238263  238265  238269  238271  238275  238277  238279  238280  238281  238283  238284  238285  238287  238289  238293  238295  238299  238301  238305  238311  238313  238319  238323  238325  238329  238335  238341  238343  238349  238353  238355  238361  238365  238371  238379  266669 

科目: 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,輸出的y等于( 。
A.$\frac{1}{2}$B.0C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知sinα=-$\frac{12}{13}$,且α是第三象限的角,則tanα的值為(  )
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目: 來源: 題型:選擇題

10.“l(fā)n(x+2)<0”是“x<0”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=ax-lnx,g(x)=ex+ax.
(1)若a<0.
(i)試探討函數(shù)f(x)的單調(diào)性;
(ii)若函數(shù)f(x)和g(x)在區(qū)間(0,ln3)上具有相同的單調(diào)性,求實數(shù)a的取值范圍;
(2)設函數(shù)h(x)=x2-f(x)有兩個極值點x1,x2,且x1∈(0,$\frac{1}{2}$),求證:h(x1)-h(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目: 來源: 題型:解答題

8.為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現(xiàn)對30名五年級學生進行了問卷調(diào)查得到如下列聯(lián)表(平均每天喝500ml以上為常喝,體重超過50kg為肥胖):
常喝不常喝合計
肥胖2
不肥胖18
合計30
已知在全部30人中隨機抽取1人,抽到肥胖的學生的概率為$\frac{4}{15}$
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99%的把握認為肥胖與常喝碳酸飲料有關?說明你的理由;
(3)若常喝碳酸飲料且肥胖的學生中有2名女生,現(xiàn)從常喝碳酸飲料且肥胖的學生中抽取2人參加電視節(jié)目,則正好抽到一男一女的概率是多少?
參考數(shù)據(jù):
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目: 來源: 題型:填空題

7.若直線l1:2x-y+4=0,直線l2:2x-y-6=0都是⊙M:(x-a)2+(y-1)2=r2的切線,則⊙M的標準方程為(x-1)2+(y-1)2=5.

查看答案和解析>>

科目: 來源: 題型:填空題

6.在△ABC中,若sinA=2sinB,且a+b-$\sqrt{3}$c=0,則角C的大小為$\frac{π}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知A為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點,B為點A關于原點的對稱點,F(xiàn)為橢圓的左焦點,且AF⊥BF,若∠ABF∈[$\frac{π}{12}$,$\frac{π}{4}$],則該橢圓離心率的取值范圍為( 。
A.[0,$\frac{\sqrt{2}}{2}$]B.[$\frac{\sqrt{2}}{2}$,1)C.[0,$\frac{\sqrt{6}}{3}$]D.[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{3}$]

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知不等式組$\left\{\begin{array}{l}{x+y-3≥0,}&{\;}\\{x-2y+3≥0,}&{\;}\\{x≤a}&{\;}\end{array}\right.$,(a>1)表示的平面區(qū)域為D,點(x0,y0)在平面區(qū)域D上,則3x0-y0的最小值等于( 。
A.4a-3B.-1C.1D.$\frac{5a-3}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.函數(shù)y=$\frac{1+x}{1-x}$的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案