相關習題
 0  238441  238449  238455  238459  238465  238467  238471  238477  238479  238485  238491  238495  238497  238501  238507  238509  238515  238519  238521  238525  238527  238531  238533  238535  238536  238537  238539  238540  238541  238543  238545  238549  238551  238555  238557  238561  238567  238569  238575  238579  238581  238585  238591  238597  238599  238605  238609  238611  238617  238621  238627  238635  266669 

科目: 來源: 題型:選擇題

3.若復數(shù)z滿足(z-3)(1-3i)=10(i為虛數(shù)單位),則z的模為( 。
A.$\sqrt{5}$B.5C.$2\sqrt{6}$D.25

查看答案和解析>>

科目: 來源: 題型:填空題

2.若直線y=kx與曲線y=x+e-x相切,則k=1-e.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.直角△ABC中,AD為斜邊BC邊的高,若$|{\overrightarrow{AC}}|=1$,$|{\overrightarrow{AB}}|=3$,則$\overrightarrow{CD}•\overrightarrow{AB}$=( 。
A.$\frac{9}{10}$B.$\frac{3}{10}$C.$-\frac{3}{10}$D.$-\frac{9}{10}$

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知向量$\overrightarrow a$,$\overrightarrow b$滿足$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$|\overrightarrow a+\overrightarrow b|=\sqrt{5}$,則$|2\overrightarrow a-\overrightarrow b|$=2$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^{x-1}},x>1\\ tan\frac{πx}{3},x≤1\end{array}\right.$則$f(\frac{1}{f(2)})$=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

18.數(shù)據(jù)a1、a2、a3、…、an的方差為S2,則數(shù)據(jù)2a1-3,2a2-3、2a3-3、…、2an-3的標準差為2S.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.為比較甲乙兩地某月11時的氣溫情況,隨機選取該月中的5天中11時的氣溫數(shù)據(jù)(位:℃)制成如圖所示的莖葉圖,已知甲地該月11時的平均氣溫比乙地該月11時的平均氣溫高1℃,則甲地該月11時的平均氣溫的標準差為( 。
A.2B.$\sqrt{2}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目: 來源: 題型:填空題

16.中國古代數(shù)學經(jīng)典<<九章算術>>中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的三棱錐稱之為鱉臑(biē nào).若三棱錐P-ABC為鱉臑,且PA⊥平面ABC,PA=AB=2,又該鱉臑的外接球的表面積為24π,則該鱉臑的體積為$\frac{8}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,PA=AD,E,F(xiàn)分別為PD,BC的中點.
(1)求證:AE⊥PC;
(2)G為線段PD上一點,若FG∥平面AEC,求$\frac{PG}{PD}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

14.現(xiàn)階段全國多地空氣質量指數(shù)“爆表”.為探究車流量與PM2.5濃度是否相關,現(xiàn)對北方某中心城市的車流量最大的地區(qū)進行檢測,現(xiàn)采集到12月某天7個不同時段車流量與PM2.5濃度的數(shù)據(jù),如下表:
車流量x(萬輛/小時)1234567
PM2.5濃度y(微克/立方米)30363840424450
(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;
(2)規(guī)定當PM2.5濃度平均值在(0,50],空氣質量等級為優(yōu);當PM2.5濃度平均值在(50,100],空氣質量等級為良;為使該城市空氣質量為優(yōu)和良,利用該回歸方程,預測要將車流量控制在每小時多少萬輛內(nèi)(結果以萬輛做單位,保留整數(shù)).
附:回歸直線方程:$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y=\widehatb\overline x$.

查看答案和解析>>

同步練習冊答案