相關(guān)習(xí)題
 0  239105  239113  239119  239123  239129  239131  239135  239141  239143  239149  239155  239159  239161  239165  239171  239173  239179  239183  239185  239189  239191  239195  239197  239199  239200  239201  239203  239204  239205  239207  239209  239213  239215  239219  239221  239225  239231  239233  239239  239243  239245  239249  239255  239261  239263  239269  239273  239275  239281  239285  239291  239299  266669 

科目: 來(lái)源: 題型:解答題

15.如圖,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC=BC=5,AB=6,M是CC1中點(diǎn),CC1=8.
(1)求證:平面AB1M⊥平面A1ABB1;
(2)求平面AB1M與平面ABC所成二面角的正弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖,其中前三段的頻率成等比數(shù)列.
(1)求圖中實(shí)數(shù)a的值;
(2)若該校高一年級(jí)共有學(xué)生640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于80分的人數(shù);
(3)若從樣本中數(shù)學(xué)成績(jī)?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,記這兩名學(xué)生成績(jī)?cè)赱90,100]內(nèi)的人數(shù)為X,求隨機(jī)變量X的分布列和期望值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

13.已知數(shù)列{an}是首項(xiàng)為32的正項(xiàng)等比數(shù)列,Sn是其前n項(xiàng)和,且$\frac{{S}_{7}-{S}_{5}}{{S}_{5}-{S}_{3}}$=$\frac{1}{4}$,若Sk≤4•(2k-1),則正整數(shù)k的最小值為4.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

12.直線y=4x與曲線y=x2圍成的封閉區(qū)域面積為$\frac{32}{3}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

11.如圖是一個(gè)算法的流程圖,則輸出K值是( 。
A.6B.7C.16D.19

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

10.17世紀(jì)日本數(shù)學(xué)家們對(duì)這個(gè)數(shù)學(xué)關(guān)于體積方法的問(wèn)題還不了解,他們將體積公式“V=kD3”中的常數(shù)k稱為“立圓術(shù)”或“玉積率”,創(chuàng)用了求“玉積率”的獨(dú)特方法“會(huì)玉術(shù)”,其中,D為直徑,類似地,對(duì)于等邊圓柱(軸截面是正方形的圓柱叫做等邊圓柱)、正方體也有類似的體積公式V=kD3,其中,在等邊圓柱中,D表示底面圓的直徑;在正方體中,D表示棱長(zhǎng),假設(shè)運(yùn)用此“會(huì)玉術(shù)”,求得的球、等邊圓柱、正方體的“玉積率”分別為k1,k2,k3=( 。
A.$\frac{π}{4}$:$\frac{π}{6}$:1B.$\frac{π}{6}$:$\frac{π}{4}$:2C.1:3:$\frac{12}{π}$D.1:$\frac{3}{2}$:$\frac{6}{π}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

9.將一條均勻木棍隨機(jī)折成兩段,則其中一段大于另一段三倍的概率為( 。
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

8.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{x-y≤1}\end{array}\right.$,則z=3x+y的最小值為( 。
A.-1B.1C.0D.11

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.已知等比數(shù)列{an}中,a3a9=2a52,且a3=2,則a5=( 。
A.-4B.4C.-2D.2

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(-1,2),b=(0,3),如果向量$\overrightarrow{a}$+2$\overrightarrow$與$\overrightarrow{a}$-x$\overrightarrow$垂直,則實(shí)數(shù)x的值為( 。
A.1B.-1C.$\frac{17}{24}$D.-$\frac{17}{24}$

查看答案和解析>>

同步練習(xí)冊(cè)答案