相關(guān)習(xí)題
 0  239130  239138  239144  239148  239154  239156  239160  239166  239168  239174  239180  239184  239186  239190  239196  239198  239204  239208  239210  239214  239216  239220  239222  239224  239225  239226  239228  239229  239230  239232  239234  239238  239240  239244  239246  239250  239256  239258  239264  239268  239270  239274  239280  239286  239288  239294  239298  239300  239306  239310  239316  239324  266669 

科目: 來源: 題型:選擇題

4.已知拋物線x2=4y上一點A縱坐標(biāo)為4,則點A到拋物線焦點的距離為( 。
A.$\sqrt{10}$B.4C.5D.$\sqrt{15}$

查看答案和解析>>

科目: 來源: 題型:解答題

3.五一期間,某商場決定從2種服裝、3種家電、4種日用品中,選出3種商品進行促銷活動.
(1)試求選出3種商品中至少有一種是家電的概率;
(2)商場對選出的某商品采用抽獎方式進行促銷,即在該商品現(xiàn)價的基礎(chǔ)上將價格提高60元,規(guī)定購買該商品的顧客有3次抽獎的機會:若中一次獎,則獲得數(shù)額為n元的獎金;若中兩次獎,則獲得數(shù)額為3n元的獎金;若中三次獎,則共獲得數(shù)額為 6n元的獎金.假設(shè)顧客每次抽獎中獎的概率都是$\frac{1}{4}$,請問:商場將獎金數(shù)額n最高定為多少元,才能使促銷方案對商場有利?

查看答案和解析>>

科目: 來源: 題型:填空題

2.巳知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時,都有不等式f(x)+xf'(x)>0成立,若$a={4^{0.2}}f({{4^{0.2}}}),b=({{{log}_4}3})f({{{log}_4}3}),c=({{{log}_4}\frac{1}{16}})f({{{log}_4}\frac{1}{16}})$,則a,b,c的大小關(guān)系是c>a>b.

查看答案和解析>>

科目: 來源: 題型:填空題

1.某校高三年級要從5名男生和2名女生中任選3名代表參加數(shù)學(xué)競賽(每人被選中的機會均等),則在男生甲被選中的情況下,男生乙和女生丙至少一個被選中的概率是$\frac{3}{5}$.

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知$a=\int_0^π{2sin\frac{x}{2}}cos\frac{x}{2}dx$,則a=2.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知點F2,P分別為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦點與右支上的一點,O為坐標(biāo)原點,若2$\overrightarrow{OM}=\overrightarrow{OP}+\overrightarrow{O{F_2}},|{\overrightarrow{O{F_2}}}|=|{\overrightarrow{{F_2}M}}$|,且$\overrightarrow{O{F_2}}•\overrightarrow{{F_2}M}=\frac{c^2}{2}$,則該雙曲線的離心率為( 。
A.$2\sqrt{3}$B.$\frac{3}{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}+1}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

18.在平行四邊形ABCD中,$|{\overrightarrow{AD}}|=3,|{\overrightarrow{AB}}|=5,\overrightarrow{AE}=\frac{2}{3}\overrightarrow{AD},\overrightarrow{BF}=\frac{1}{3}\overrightarrow{BC},cosA=\frac{3}{5}$,則$|{\overrightarrow{EF}}$|=( 。
A.$\sqrt{14}$B.$2\sqrt{5}$C.$4\sqrt{2}$D.$2\sqrt{11}$

查看答案和解析>>

科目: 來源: 題型:解答題

17.如圖,已知A、B、C、D為拋物線E:x2=2py(p>0)上不同四點,其中A、D關(guān)于y軸對稱,過點D作拋物線E的切線l和直線BC平行.
(Ⅰ)求證:AD平分∠CAB;
(Ⅱ)若p=2,點D到直線AB、AC距離和為$\sqrt{2}$|AD|,三角形ABC面積為128,求BC的直線方程.

查看答案和解析>>

科目: 來源: 題型:解答題

16.某電子產(chǎn)品公司前四年的年宣傳費x(單位:千萬元)與年銷售量y(單位:百萬部)的數(shù)據(jù)如下表所示:
x(單位:千萬元) 1 2 3 4
 y(單位:百萬部) 3 5 69
可以求y關(guān)于x的線性回歸方程為$\stackrel{∧}{y}$=1.9x+1.
(1)該公司下一年準(zhǔn)備投入10千萬元的宣傳費,根據(jù)所求得的回歸方程預(yù)測下一年的銷售量m:
(2)根據(jù)下表所示五個散點數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.
 x(單位:千萬元) 1 2 3 4 10
 y(單位:百萬部) 3 6 9m
并利用小二乘法的原理說明$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$與$\stackrel{∧}{y}$=1.9x+1的關(guān)系.
參考公式:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘法估計公式分別為:
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知Sn為數(shù)列{an}的前n項和,且Sn=$\frac{1}{2}$n2+$\frac{3}{2}$n-1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案