相關(guān)習(xí)題
 0  239258  239266  239272  239276  239282  239284  239288  239294  239296  239302  239308  239312  239314  239318  239324  239326  239332  239336  239338  239342  239344  239348  239350  239352  239353  239354  239356  239357  239358  239360  239362  239366  239368  239372  239374  239378  239384  239386  239392  239396  239398  239402  239408  239414  239416  239422  239426  239428  239434  239438  239444  239452  266669 

科目: 來源: 題型:選擇題

18.已知集合A={2,4,6,8},$B=\left\{{x|y=\sqrt{4-x}}\right\}$,則A∩B=( 。
A.{2}B.{2,4}C.{2,4,6}D.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=ex($\frac{1}{3}$x3-2x2+(a+4)x-2a-4),其中a∈R,e為自然對數(shù)的底數(shù).
(1)關(guān)于x的不等式f(x)<-$\frac{4}{3}$ex在(-∞,2)上恒成立,求a的取值范圍;
(2)討論函數(shù)f(x)極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

16.設(shè)α為銳角,且cos(α+$\frac{π}{6}$)=$\frac{3}{5}$.
(1)求cos($α-\frac{π}{3}$)的值;
(2)求cos(2α-$\frac{π}{6}$)的值.

查看答案和解析>>

科目: 來源: 題型:填空題

15.對于實(shí)數(shù)a,b,定義運(yùn)算“□”:a□b=$\left\{\begin{array}{l}{{a}^{2}-ab,a≤b}\\{^{2}-ab,a>b}\end{array}\right.$設(shè)f(x)=(x-4)□($\frac{7}{4}$x-4),若關(guān)于x的方程|f(x)-m|=1(m∈R)恰有四個(gè)互不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是(-1,1)∪(2,4).

查看答案和解析>>

科目: 來源: 題型:填空題

14.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上有一個(gè)點(diǎn)A,它關(guān)于原點(diǎn)的對稱點(diǎn)為B,點(diǎn)F為橢圓的右焦點(diǎn),且滿足AF⊥BF,當(dāng)∠ABF=$\frac{π}{12}$時(shí),橢圓的離心率為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知a,b∈R,i是虛數(shù)單位,若a+i=1-bi,則(a+bi)8=16.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖1,在直角梯形ABCD中,AB∥DC,∠BAD=90°,AB=AD=$\frac{1}{2}$CD=1,如圖2,將△ABD沿BD折起來,使平面ABD⊥平面BCD,設(shè)E為AD的中點(diǎn),F(xiàn)為AC上一點(diǎn),O為BD的中點(diǎn).
(Ⅰ)求證:AO⊥平面BCD;、
(Ⅱ)若三棱錐A-BEF的體積為$\frac{\sqrt{2}}{18}$,求二面角A-BE-F的余弦值的絕對值.

查看答案和解析>>

科目: 來源: 題型:填空題

11.函數(shù)f(x)=2cos$\frac{ωx}{2}$(sin$\frac{ωx}{2}$-$\sqrt{3}$cos$\frac{ωx}{2}$)+$\sqrt{3}$(ω>0)在區(qū)間($\frac{π}{3}$,π)上有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)ω的范圍為($\frac{1}{3}$,1)∪($\frac{4}{3}$,3].

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知三棱錐P-ABC的各頂點(diǎn)都在同一球的面上,且PA⊥平面ABC,若球O的體積為$\frac{20\sqrt{5}π}{3}$(球的體積公式為$\frac{4π}{3}$R3,其中R為球的半徑),AB=2,AC=1,∠BAC=60°,則三棱錐P-ABC的體積為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為x-ay=0,曲線C的一個(gè)焦點(diǎn)與拋物線y2=-8x的焦點(diǎn)重合,則雙曲線的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{2}$C.2D.$\sqrt{10}$

查看答案和解析>>

同步練習(xí)冊答案