科目: 來源: 題型:
【題目】下列結(jié)論正確的是( )
A. 空間中不同三點(diǎn)確定一個(gè)平面
B. 空間中兩兩相交的三條直線確定一個(gè)平面
C. 一條直線和一個(gè)點(diǎn)能確定一個(gè)平面
D. 梯形一定是平面圖形
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓(a>b>0)的離心率,過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為.
(1)求橢圓的方程.
(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,當(dāng)點(diǎn)在的圖象上運(yùn)動時(shí),點(diǎn)在函數(shù)的圖象上運(yùn)動().
(Ⅰ)求和的表達(dá)式;
(Ⅱ)已知關(guān)于的方程有實(shí)根,求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè),函數(shù)的值域?yàn)?/span>,求實(shí)數(shù)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】中,,,于點(diǎn),于點(diǎn).
(1)如圖1,作的角平分線交于點(diǎn),連接.求證:;
(2)如圖2,連接,點(diǎn)與點(diǎn)關(guān)于直線對稱,連接、.
①依據(jù)題意補(bǔ)全圖形;
②用等式表示線段、、之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知方程.
(1)若此方程表示圓,求的取值范圍;
(2)若(1)中的圓與直線相交于,兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求;
(3)在(2)的條件下,求以為直徑的圓的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】若a=log0.50.2,b=log20.2,c=20.2,則a,b,c的大小關(guān)系是( 。
A. a<b<c B. b<c<a C. b<a<c D. c<b<a
查看答案和解析>>
科目: 來源: 題型:
【題目】某班主任對全班50名學(xué)生作了一次調(diào)查,所得數(shù)據(jù)如表:
認(rèn)為作業(yè)多 | 認(rèn)為作業(yè)不多 | 總計(jì) | |
喜歡玩電腦游戲 | 18 | 9 | 27 |
不喜歡玩電腦游戲 | 8 | 15 | 23 |
總計(jì) | 26 | 24 | 50 |
由表中數(shù)據(jù)計(jì)算得到K2的觀測值k≈5.059,于是________(填“能”或“不能”)在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多有關(guān).
查看答案和解析>>
科目: 來源: 題型:
【題目】為了普及環(huán)保知識增強(qiáng)環(huán)保意識,某校從理工類專業(yè)甲班抽取60人,從文史類乙班抽取50人參加環(huán)保知識測試.
(1)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷你是否有99%的把握認(rèn)為環(huán)保知識與專業(yè)有關(guān)?
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | |||
乙班 | 30 | ||
總計(jì) | 60 |
(2)為參加上級舉辦的環(huán)保知識競賽,學(xué)校舉辦預(yù)選賽,預(yù)選賽答卷滿分100分,優(yōu)秀的同學(xué)得60分以上通過預(yù)選,非優(yōu)秀的同學(xué)得80分以上通過預(yù)選,若每位同學(xué)得60分以上的概率為,得80分以上的概率為,現(xiàn)已知甲班有3人參加預(yù)選賽,其中1人為優(yōu)秀學(xué)生,若隨機(jī)變量X表示甲班通過預(yù)選的人數(shù),
求X的分布列及期望E(X).
附: , n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010[ | 0.005 |
k0 | 2.706 | 3.84 | 5.02 | 6.635 | 7.879 |
查看答案和解析>>
科目: 來源: 題型:
【題目】利用獨(dú)立性檢驗(yàn)來考慮兩個(gè)分類變量X和Y是否有關(guān)系時(shí),通過查閱臨界值表來確定推斷“X與Y有關(guān)系”的可信度,如果k>5.024,那么就推斷“X和Y有關(guān)系”,這種推斷犯錯(cuò)誤的概率不超過( )
A. 0.25 B. 0.75
C. 0.025 D. 0.975
查看答案和解析>>
科目: 來源: 題型:
【題目】對于數(shù)25,規(guī)定第1次操作為23+53=133,第2次操作為13+33+33=55,如此反復(fù)操作,則第2 017次操作后得到的數(shù)是( )
A. 25 B. 250
C. 55 D. 133
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com