科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ax2-2x+1.
(1)當,試討論函數(shù)f(x)的單調(diào)性;
(2)若≤a≤1,且f(x)在[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)-N(a),求g(a)的表達式;
(3)在(2)的條件下,求g(a)的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,是兩條不同直線,,是兩個不同平面,則下列命題正確的是( )
A.若,垂直于同一平面,則與平行
B.若,平行于同一平面,則與平行
C.若,不平行,則在內(nèi)不存在與平行的直線
D.若,不平行,則與不可能垂直于同一平面
查看答案和解析>>
科目: 來源: 題型:
【題目】以一個等邊三角形的底邊所對應(yīng)的中線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周所得的幾何體是( )
A.一個圓柱B.一個圓錐C.一個圓臺D.兩個圓錐
查看答案和解析>>
科目: 來源: 題型:
【題目】某市組織500名志愿者參加敬老活動,為方便安排任務(wù)將所有志愿者按年齡(單位:歲)分組,得到的頻率分布表如下.現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人擔任聯(lián)系人.
年齡(歲) | 頻率 | |
第1組 | 0.1 | |
第2組 | 0.1 | |
第3組 | 0.4 | |
第4組 | 0.3 | |
第5組 | 0.1 |
(1)應(yīng)分別在第1,2,3組中抽取志愿者多少人?
(2)從這6人中隨機抽取2人擔任本次活動的宣傳員,求至少有1人年齡在第3組的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法中錯誤的是( )
A.在三角形中,已知兩邊及其一邊的對角,不能用余弦定理求解三角形
B.余弦定理揭示了任意三角形邊角之間的關(guān)系,因此它適用于任何三角形
C.利用余弦定理,可以解決已知三角形三邊求角的問題
D.在三角形中,勾股定理是余弦定理的特例
查看答案和解析>>
科目: 來源: 題型:
【題目】某大學生在開學季準備銷售一種文具盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出1盒該產(chǎn)品獲利潤50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季購進了160盒該產(chǎn)品,以(單位:盒,)表示這個開學季內(nèi)的市場需求量,(單位:元)表示這個開學季內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(1)根據(jù)直方圖估計這個開學季內(nèi)市場需求量和中位數(shù);
(2)將表示為的函數(shù);
(3)根據(jù)直方圖估計利潤不少于4800元的概率
查看答案和解析>>
科目: 來源: 題型:
【題目】下列變化過程中,變量之間不是函數(shù)關(guān)系的為( )
A.地球繞太陽公轉(zhuǎn)的過程中,二者間的距離與時間的關(guān)系
B.在銀行,給定本金和利率后,活期存款的利息與存款天數(shù)的關(guān)系
C.某地區(qū)玉米的畝產(chǎn)量與灌溉次數(shù)的關(guān)系
D.近年來中國高鐵年運營里程與年份的關(guān)系
查看答案和解析>>
科目: 來源: 題型:
【題目】“健步走”是一種方便而又有效的鍛煉方式,李老師每天堅持“健步走”,并用計步器進行統(tǒng)計.他最近8天“健步走”步數(shù)的條形統(tǒng)計圖及相應(yīng)的消耗能量數(shù)據(jù)表如下:
(1)求李老師這8天“健步走”步數(shù)的平均數(shù);
(2)從步數(shù)為16千步,17千步,18千步的6天中任選2天,設(shè)李老師這2天通過“健步走”消耗的能量和為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】2017年天貓五一活動結(jié)束后,某地區(qū)研究人員為了研究該地區(qū)在五一活動中消費超過3000元的人群的年齡狀況,隨機在當?shù)叵M超過3000元的群眾中抽取了500人作調(diào)查,所得概率分布直方圖如圖所示:記年齡在, , 對應(yīng)的小矩形的面積分別是,且.
(1)以頻率作為概率,若該地區(qū)五一消費超過3000元的有30000人,試估計該地區(qū)在五一活動中消費超過3000元且年齡在的人數(shù);
(2)計算在五一活動中消費超過3000元的消費者的平均年齡;
(3)若按照分層抽樣,從年齡在, 的人群中共抽取7人,再從這7人中隨機抽取2人作深入調(diào)查,求至少有1人的年齡在內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com