科目: 來源: 題型:
【題目】某電動小汽車生產(chǎn)企業(yè),年利潤(出廠價投入成本)年銷售量.已知上年度生產(chǎn)電動小汽車的投入成本為萬元/輛,出廠價為萬/輛,年銷售量為輛,本年度為打造綠色環(huán)保電動小汽車,提高產(chǎn)品檔次,計劃增加投入成本,若每輛電動小汽車投入成本增加的比例為(),則出廠價相應提高的比例為.同時年銷售量增加的比例為.
(1)寫出本年度預計的年利潤(萬元)與投入成本增加的比例的函數(shù)關系式;
(2)為了使本年度的年利潤最大,每輛車投入成本增加的比例應為多少?最大年利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解某校高三學生的視力情況,隨機地抽查了該校1000名高三學生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分數(shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設最大頻率為,視力在4.6到5.0之間的學生數(shù), 的值分別為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某班主任對全班50名學生的學習積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:
積極參加班級工作 | 不太主動參加班級工作 | 合計 | |
學習積極性一般 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?
(2)判斷是否有的把握認為學生的學習積極性與對待班級工作的態(tài)度有關系?
附: , n=a+b+c+d.
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關于x的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注: )
查看答案和解析>>
科目: 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)在某一個周期內(nèi)的圖象時,列表并填入的數(shù)據(jù)如下表:
x | x1 | x2 | x3 | ||
ωx+φ | 0 | π | 2π | ||
Asin(ωx+φ) | 0 | 2 | 0 | -2 | 0 |
(1)求x1,x2,x3的值及函數(shù)f(x)的表達式;
(2)將函數(shù)f(x)的圖象向左平移π個單位,可得到函數(shù)g(x)的圖象,求函數(shù)y=f(x)·g(x)在區(qū)間的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】做投擲2個骰子試驗,用(x,y)表示點P的坐標,其中x表示第1個骰子出現(xiàn)的點數(shù),y表示第2個骰子出現(xiàn)的點數(shù).
(1)求點P在直線y=x上的概率.
(2)求點P不在直線y=x+1上的概率.
(3)求點P的坐標(x,y)滿足16<x2+y2≤25的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了檢驗某種溶劑的揮發(fā)性,在容器為1升的容器中注入溶液,然后在揮發(fā)的過程中測量剩余溶液的容積.已知溶劑注入過程中,其容積y(升)與時間t(分鐘)成正比,且恰在2分鐘注滿;注入完成后,y與t的關系為(為常數(shù)),如圖
(1)求容積y與時間t之間的函數(shù)關系式.
(2)當容器中的溶液少于8毫升時,試驗結(jié)束,則從注入溶液開始,至少需要經(jīng)過多少分鐘,才能結(jié)束試驗?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+cx+d(a≠0)是R上的奇函數(shù),當x=1時,f(x)取得極值-2.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極大值;
(3)證明:對任意x1、x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.
查看答案和解析>>
科目: 來源: 題型:
【題目】經(jīng)市場調(diào)研,某超市一種玩具在過去一個月(按30天)的銷售量(件)與價格(元)均為時間(天)的函數(shù),且銷售量近似滿足,價格近似滿足。
(1)試寫出該種玩具的日銷售額與時間(, )的函數(shù)關系式;
(2)求該種玩具的日銷售額的最大值。
查看答案和解析>>
科目: 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布.
(1)假設生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在
之外的零件數(shù),求;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.
下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計算得, ,其中為抽取的第個零件的尺寸, .
用樣本平均數(shù)作為的估計值,用樣本標準差作為的估計值,利用估計值判斷是否需對當天的生產(chǎn)過程進行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計和(精確到0.01).
附:若隨機變量服從正態(tài)分布,則,
, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com