相關(guān)習題
 0  257412  257420  257426  257430  257436  257438  257442  257448  257450  257456  257462  257466  257468  257472  257478  257480  257486  257490  257492  257496  257498  257502  257504  257506  257507  257508  257510  257511  257512  257514  257516  257520  257522  257526  257528  257532  257538  257540  257546  257550  257552  257556  257562  257568  257570  257576  257580  257582  257588  257592  257598  257606  266669 

科目: 來源: 題型:

【題目】已知函數(shù), .

(1)若關(guān)于的不等式上恒成立,求的取值范圍;

(2)設(shè)函數(shù),若上存在極值,求的取值范圍,并判斷極值的正負.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓M的圓心為M(﹣1,2),直線y=x+4被圓M截得的弦長為 ,點P在直線l:y=x﹣1上.
(1)求圓M的標準方程;
(2)設(shè)點Q在圓M上,且滿足 =4 ,求點P的坐標;
(3)設(shè)半徑為5的圓N與圓M相離,過點P分別作圓M與圓N的切線,切點分別為A,B,若對任意的點P,都有PA=PB成立,求圓心N的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】用a代表紅球,b代表藍球,c代表黑球,由加法原理及乘法原理,從1個紅球和1個藍球中取出若干個球的所有取法可由(1+a)(1+b)的展開式1+a+b+ab表示出來,如:“1”表示一個球都不取、“a”表示取出一個紅球,而“ab”表示把紅球和藍球都取出來,以此類推,下列各式中,其展開式可用來表示從3個無區(qū)別的紅球、3個無區(qū)別的藍球、2個有區(qū)別的黑球中取出若干個球,且所有藍球都取出或都不取出的所有取法的是
①(1+a+a2+a3)(1+b3)(1+c)2
②(1+a3)(1+b+b2+b3)(1+c)2
③(1+a)3(1+b+b2+b3)(1+c2
④(1+a3)(1+b)3(1+c+c2

查看答案和解析>>

科目: 來源: 題型:

【題目】為調(diào)查高中生的數(shù)學成績與學生自主學習時間之間的相關(guān)關(guān)系,長郡中學數(shù)學教師對新入學的45名學生進行了跟蹤調(diào)查,其中每周自主做數(shù)學題的時間不少于15小時的有19人,余下的人中,在高三模擬考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后,得到如下的列聯(lián)表:

分數(shù)大于等于120分

分數(shù)不足120分

合計

周做題時間不少于15小時

4

19

周做題時間不足15小時

合計

45

(1)請完成上面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“高中生的數(shù)學成績與學生自主學習時間有關(guān)”;

(2)(ⅰ)按照分層抽樣的方法,在上述樣本中,從分數(shù)大于等于120分和分數(shù)不足120分兩組學生中抽取9名學生,設(shè)抽到的不足120分且周做題時間不足15小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);

(ⅱ)若將頻率視為概率,從全校大于等于120分的學生中隨機抽取20人,求這些人中周做題時間不少于15小時的人數(shù)的期望和方差.

附:

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,∠PAQ是村里一個小湖的一角,其中∠PAQ=60°.為了給村民營造豐富的休閑環(huán)境,村委會決定在直線湖岸AP與AQ上分別建觀光長廊AB與AC,其中AB是寬長廊,造價是800元/米;AC是窄長廊,造價是400元/米;兩段長廊的總造價預算為12萬元(恰好都用完);同時,在線段BC上靠近點B的三等分點D處建一個表演舞臺,并建水上通道AD(表演舞臺的大小忽略不計),水上通道的造價是600元/米.

(1)若規(guī)劃寬長廊AB與窄長廊AC的長度相等,則水上通道AD的總造價需多少萬元?
(2)如何設(shè)計才能使得水上通道AD的總造價最低?最低總造價是多少萬元?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四邊形ABCD中,△ABC是邊長為6的正三角形,設(shè) (x,y∈R).

(1)若x=y=1,求| |;
(2)若 =36, =54,求x,y.

查看答案和解析>>

科目: 來源: 題型:

【題目】2000多年前,古希臘大數(shù)學家阿波羅尼奧斯((Apollonius)發(fā)現(xiàn):平面截圓錐的截口曲線是圓錐曲線.已知圓錐的高為 為地面直徑,頂角為,那么不過頂點的平面;與夾角時,截口曲線為橢圓;與夾角時,截口曲線為拋物線;與夾角時,截口曲線為雙曲線.如圖,底面內(nèi)的直線,過的平面截圓錐得到的曲線為橢圓,其中與的交點為,可知為長軸.那么當在線段上運動時,截口曲線的短軸頂點的軌跡為( )

A. 圓的部分 B. 橢圓的部分 C. 雙曲線的部分 D. 拋物線的部分

查看答案和解析>>

科目: 來源: 題型:

【題目】已知a∈R,函數(shù)f(x)=(﹣x2+ax)ex(x∈R,e為自然對數(shù)的底數(shù)).
(1)當a=2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)在(﹣1,1)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1⊥底面ABC,CA=CB,D,E,F(xiàn)分別為AB,A1D,A1C的中點,點G在AA1上,且A1D⊥EG.

(1)求證:CD∥平面EFG;
(2)求證:A1D⊥平面EFG.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωx+)(A,ω,為常數(shù),且A>0,ω>0,0<<π)的部分圖象如圖所示.

(1)求A,ω,的值;
(2)當x∈[0, ]時,求f(x)的取值范圍.

查看答案和解析>>

同步練習冊答案