科目: 來源: 題型:
【題目】已知函數(shù), .
(1)若關(guān)于的不等式在上恒成立,求的取值范圍;
(2)設(shè)函數(shù),若在上存在極值,求的取值范圍,并判斷極值的正負.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓M的圓心為M(﹣1,2),直線y=x+4被圓M截得的弦長為 ,點P在直線l:y=x﹣1上.
(1)求圓M的標準方程;
(2)設(shè)點Q在圓M上,且滿足 =4 ,求點P的坐標;
(3)設(shè)半徑為5的圓N與圓M相離,過點P分別作圓M與圓N的切線,切點分別為A,B,若對任意的點P,都有PA=PB成立,求圓心N的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】用a代表紅球,b代表藍球,c代表黑球,由加法原理及乘法原理,從1個紅球和1個藍球中取出若干個球的所有取法可由(1+a)(1+b)的展開式1+a+b+ab表示出來,如:“1”表示一個球都不取、“a”表示取出一個紅球,而“ab”表示把紅球和藍球都取出來,以此類推,下列各式中,其展開式可用來表示從3個無區(qū)別的紅球、3個無區(qū)別的藍球、2個有區(qū)別的黑球中取出若干個球,且所有藍球都取出或都不取出的所有取法的是
①(1+a+a2+a3)(1+b3)(1+c)2
②(1+a3)(1+b+b2+b3)(1+c)2
③(1+a)3(1+b+b2+b3)(1+c2)
④(1+a3)(1+b)3(1+c+c2)
查看答案和解析>>
科目: 來源: 題型:
【題目】為調(diào)查高中生的數(shù)學成績與學生自主學習時間之間的相關(guān)關(guān)系,長郡中學數(shù)學教師對新入學的45名學生進行了跟蹤調(diào)查,其中每周自主做數(shù)學題的時間不少于15小時的有19人,余下的人中,在高三模擬考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后,得到如下的列聯(lián)表:
分數(shù)大于等于120分 | 分數(shù)不足120分 | 合計 | |
周做題時間不少于15小時 | 4 | 19 | |
周做題時間不足15小時 | |||
合計 | 45 |
(1)請完成上面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“高中生的數(shù)學成績與學生自主學習時間有關(guān)”;
(2)(ⅰ)按照分層抽樣的方法,在上述樣本中,從分數(shù)大于等于120分和分數(shù)不足120分兩組學生中抽取9名學生,設(shè)抽到的不足120分且周做題時間不足15小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);
(ⅱ)若將頻率視為概率,從全校大于等于120分的學生中隨機抽取20人,求這些人中周做題時間不少于15小時的人數(shù)的期望和方差.
附:
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,∠PAQ是村里一個小湖的一角,其中∠PAQ=60°.為了給村民營造豐富的休閑環(huán)境,村委會決定在直線湖岸AP與AQ上分別建觀光長廊AB與AC,其中AB是寬長廊,造價是800元/米;AC是窄長廊,造價是400元/米;兩段長廊的總造價預算為12萬元(恰好都用完);同時,在線段BC上靠近點B的三等分點D處建一個表演舞臺,并建水上通道AD(表演舞臺的大小忽略不計),水上通道的造價是600元/米.
(1)若規(guī)劃寬長廊AB與窄長廊AC的長度相等,則水上通道AD的總造價需多少萬元?
(2)如何設(shè)計才能使得水上通道AD的總造價最低?最低總造價是多少萬元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,△ABC是邊長為6的正三角形,設(shè) (x,y∈R).
(1)若x=y=1,求| |;
(2)若 =36, =54,求x,y.
查看答案和解析>>
科目: 來源: 題型:
【題目】2000多年前,古希臘大數(shù)學家阿波羅尼奧斯((Apollonius)發(fā)現(xiàn):平面截圓錐的截口曲線是圓錐曲線.已知圓錐的高為, 為地面直徑,頂角為,那么不過頂點的平面;與夾角時,截口曲線為橢圓;與夾角時,截口曲線為拋物線;與夾角時,截口曲線為雙曲線.如圖,底面內(nèi)的直線,過的平面截圓錐得到的曲線為橢圓,其中與的交點為,可知為長軸.那么當在線段上運動時,截口曲線的短軸頂點的軌跡為( )
A. 圓的部分 B. 橢圓的部分 C. 雙曲線的部分 D. 拋物線的部分
查看答案和解析>>
科目: 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=(﹣x2+ax)ex(x∈R,e為自然對數(shù)的底數(shù)).
(1)當a=2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)在(﹣1,1)上單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1⊥底面ABC,CA=CB,D,E,F(xiàn)分別為AB,A1D,A1C的中點,點G在AA1上,且A1D⊥EG.
(1)求證:CD∥平面EFG;
(2)求證:A1D⊥平面EFG.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)=Asin(ωx+)(A,ω,為常數(shù),且A>0,ω>0,0<<π)的部分圖象如圖所示.
(1)求A,ω,的值;
(2)當x∈[0, ]時,求f(x)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com