相關習題
 0  258486  258494  258500  258504  258510  258512  258516  258522  258524  258530  258536  258540  258542  258546  258552  258554  258560  258564  258566  258570  258572  258576  258578  258580  258581  258582  258584  258585  258586  258588  258590  258594  258596  258600  258602  258606  258612  258614  258620  258624  258626  258630  258636  258642  258644  258650  258654  258656  258662  258666  258672  258680  266669 

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=log2(5﹣x)﹣log2(5+x)+1+m
(1)若f(x)是奇函數(shù),求實數(shù)m的值.
(2)若m=0,則是否存在實數(shù)x,使得f(x)>2?若存在,求出x的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知集合A={y|y=x2﹣2x﹣3,x∈R},B={x|log2x<﹣1},C={k|函數(shù)f(x)= 在(0,+∞)上是增函數(shù)}.
(1)求A,B,C;
(2)求A∩C,(UB)∪C.

查看答案和解析>>

科目: 來源: 題型:

【題目】設拋物線y2=2px(p>0)的焦點為F,其準線與x軸的交點為Q,過Q點的直線l交拋物線于A,B兩點.
(1)若直線l的斜率為 ,求證: ;
(2)設直線FA,F(xiàn)B的斜率分別為k1 , k2 , 求k1+k2的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】己知圓C1的參數(shù)方程為 (φ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C2的極坐標方程為ρ=2 cos(θ﹣ ). (Ⅰ)將圓C1的參數(shù)方程他為普通方程,將圓C2的極坐標方程化為直角坐標方程;
(Ⅱ)圓C1 , C2是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=loga(ax﹣1)( a>0,a≠1 )
(1)討論函數(shù)f(x)的定義域;
(2)當a>1時,解關于x的不等式:f(x)<f(1);
(3)當a=2時,不等式f(x)﹣log2(1+2x)>m對任意實數(shù)x∈[1,3]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】P是雙曲線 =1(a>0,b>0)上的點,F(xiàn)1、F2是其焦點,且 =0,若△F1PF2的面積是9,a+b=7,則雙曲線的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為( ,0)
(1)求雙曲線C的方程;
(2)若直線l:y=kx+ 與雙曲線C恒有兩個不同的交點A和B,且 >2(其中O為原點).求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知△ABC的周長為 +1,且sinA+sinB= sinC (I)求邊AB的長;
(Ⅱ)若△ABC的面積為 sinC,求角C的度數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】某農場種植黃瓜,根據(jù)多年的市場行情得知,從春節(jié)起的300天內,黃瓜市場售價與上市時間的關系用圖1所示的一條折線表示,黃瓜的種植成本與上市時間的關系用圖2所示的拋物線表示.(注:市場售價和種植成本的單位:元/kg,時間單位:天)
(1)寫出圖1表示的市場售價與時間的函數(shù)關系式P=f(t);寫出圖2表示的種植成本與時間的函數(shù)關系式Q=g(x);

(2)認定市場售價減去種植成本為純收益,問從春節(jié)開始的第幾天上市的黃瓜純收益最大?并求出最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2﹣2ax+1,a∈R;
(1)若函數(shù)f(x)在區(qū)間(﹣1,2)上是單調函數(shù),求實數(shù)a的取值范圍;
(2)若不等式f(x)>0對任x∈R上恒成立,求實數(shù)a的取值范圍;
(3)若函數(shù)f(x)在區(qū)間[1,+∞)的最小值為﹣2,求實數(shù)a的值.

查看答案和解析>>

同步練習冊答案