相關(guān)習(xí)題
 0  258721  258729  258735  258739  258745  258747  258751  258757  258759  258765  258771  258775  258777  258781  258787  258789  258795  258799  258801  258805  258807  258811  258813  258815  258816  258817  258819  258820  258821  258823  258825  258829  258831  258835  258837  258841  258847  258849  258855  258859  258861  258865  258871  258877  258879  258885  258889  258891  258897  258901  258907  258915  266669 

科目: 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,平面底面,.分別是的中點(diǎn),求證:

(Ⅰ)底面

(Ⅱ)平面;

(Ⅲ)平面平面.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在實(shí)數(shù)集R中定義一種運(yùn)算“*”,對(duì)任意給定的a,b∈R,a*b為唯一確定的實(shí)數(shù),且具有性質(zhì): ⑴對(duì)任意a,b∈R,a*b=b*a;(2)對(duì)任意a∈R,a*0=a;(3)對(duì)任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)﹣2c.關(guān)于函數(shù)f(x)=(3x)* 的性質(zhì),有如下說(shuō)法:
①函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為奇函數(shù);
③函數(shù)f(x)的單調(diào)遞增區(qū)間為(﹣∞,﹣ ),( ,+∞).
其中所有正確說(shuō)法的個(gè)數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如果函數(shù)f(x)=ax2+2x﹣3在區(qū)間(﹣∞,4)上是單調(diào)遞增的,則實(shí)數(shù)a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】有一種新型的洗衣液,去污速度特別快.已知每投放個(gè)單位的洗衣液在一定量水的洗衣機(jī)中,它在水中釋放的濃度(克/升)隨著時(shí)間 (分鐘) 變化的函數(shù)關(guān)系式近似為其中.根據(jù)經(jīng)驗(yàn),當(dāng)水中洗衣液的濃度不低于4(/升)時(shí),它才能起到有效去污的作用.

1若投放個(gè)單位的洗衣液,3分鐘時(shí)水中洗衣液的濃度為4 (/),的值;

2)若投放4個(gè)單位的洗衣液,則有效去污時(shí)間可達(dá)幾分鐘?

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx.
(1)設(shè)h(x)為偶函數(shù),當(dāng)x<0時(shí),h(x)=f(﹣x)+2x,求曲線y=h(x)在點(diǎn)(1,﹣2)處的切線方程;
(2)設(shè)g(x)=f(x)﹣mx,求函數(shù)g(x)的極值;
(3)若存在x0>1,當(dāng)x∈(1,x0)時(shí),恒有f(x)> 成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】是兩條不同的直線, 是三個(gè)不同的平面,下面說(shuō)法正確的是

A. , B. ,

C. , D. ,則

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知點(diǎn)及圓.

(1)設(shè)過(guò)點(diǎn)的直線與圓交于兩點(diǎn),當(dāng)時(shí),求以線段為直徑的圓的方程;

(2)設(shè)直線與圓交于兩點(diǎn),是否存在實(shí)數(shù)使得過(guò)點(diǎn)的直線垂直平分弦?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga (a>0且a≠1)是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)f(x)在區(qū)間(1,+∞)上的單調(diào)性并說(shuō)明理由;
(3)當(dāng)x∈(n,a﹣2)時(shí),函數(shù)f(x)的值域?yàn)椋?,+∞),求實(shí)數(shù)n,a的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】生產(chǎn)某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)x千件,需要另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)= +20x(萬(wàn)元),當(dāng)年產(chǎn)量不小于80千件時(shí),C(x)=51x+ ﹣1450(萬(wàn)元),通過(guò)市場(chǎng)分析,每件商品售價(jià)為0.05萬(wàn)元時(shí),該商品能全部售完.
(1)寫出年利潤(rùn)L(x)(萬(wàn)元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式(利潤(rùn)=銷售額﹣成本);
(2)年產(chǎn)量為多少千件時(shí),生產(chǎn)該商品獲得的利潤(rùn)最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案