相關(guān)習(xí)題
 0  259134  259142  259148  259152  259158  259160  259164  259170  259172  259178  259184  259188  259190  259194  259200  259202  259208  259212  259214  259218  259220  259224  259226  259228  259229  259230  259232  259233  259234  259236  259238  259242  259244  259248  259250  259254  259260  259262  259268  259272  259274  259278  259284  259290  259292  259298  259302  259304  259310  259314  259320  259328  266669 

科目: 來源: 題型:

【題目】已知拋物線 ,直線與拋物線交于, 兩點.點 為拋物線上一動點,直線, 分別與軸交于, .

(I)若的面積為,求點的坐標;

(II)當(dāng)直線時,求線段的長;

(III)若面積相等,求的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,平面平面,四邊形是全等的等腰梯形,其中,且,點的中點,點的中點.

(I)請在圖中所給的點中找出兩個點,使得這兩個點所在直線與平面垂直,并給出證明

(II)求二面角的余弦值;

(III)在線段上是否存在點,使得平面?如果存在,求出的長度,如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】
(1)求 的值;
(2)設(shè)m , n N* , nm , 求證:
.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).

(1)若直線l過拋物線C的焦點,求拋物線C的方程;
(2)已知拋物線C上存在關(guān)于直線l對稱的相異兩點P和Q.
①求證:線段PQ的中點坐標為(2-p , -p);
②求p的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上25、13后成為等比數(shù)列{bn}中的b3、b4b5

)求數(shù)列{bn}的通項公式;

)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.

(1)E的方程;

(2)設(shè)過點A的動直線lE相交于P,Q兩點.當(dāng)OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】【選做題】本題包括A、B、C、D四小題,請選定其中兩小題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩小題評分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
(1)A.【選修4—1幾何證明選講】
如圖,在△ABC中,∠ABC=90°,BDAC , D為垂足,EBC的中點,求證:∠EDC=∠ABD.

(2)B.【選修4—2:矩陣與變換】
已知矩陣A= 矩陣B的逆矩陣B1= ,求矩陣AB.
(3)【選修4—4:坐標系與參數(shù)方程】在平面直角坐標系xOy中,已知直線l的參數(shù)方程為 t為參數(shù)),橢圓C的參數(shù)方程為 為參數(shù)).設(shè)直線l與橢圓C相交于A , B兩點,求線段AB的長.
(4)D. 設(shè)a>0,|x﹣1|< ,|y﹣2|< ,求證:|2x+y﹣4|<a.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCDADAB,ABDC,ADDCAP2AB1,點E為棱PC的中點.

(1)證明:BEDC;

(2)求直線BE與平面PBD所成角的正弦值;

(3)F為棱PC上一點,滿足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】記U={1,2,…,100},對數(shù)列{an}(n∈N*)和U的子集T,若T=,定義ST=0;若T={t1 , t2 , …,tk},定義ST= + +…+ .例如:T={1,3,66}時,ST=a1+a3+a66 . 現(xiàn)設(shè){an}(n∈N*)是公比為3的等比數(shù)列,且當(dāng)T={2,4}時,ST=30.
(1)求數(shù)列{an}的通項公式;
(2)對任意正整數(shù)k(1≤k≤100),若T{1,2,…,k},求證:ST<ak+1;
(3)設(shè)CU,DU,SC≥SD , 求證:SC+SC∩D≥2SD

查看答案和解析>>

科目: 來源: 題型:

【題目】ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且2asin A=(2bc)sin B+(2cb)sin C.

(1)A的大小; (2)sin B+sin C=1,試判斷ABC的形狀.(12)

查看答案和解析>>

同步練習(xí)冊答案