科目: 來源: 題型:
【題目】已知拋物線: ,直線與拋物線交于, 兩點.點 為拋物線上一動點,直線, 分別與軸交于, .
(I)若的面積為,求點的坐標;
(II)當(dāng)直線時,求線段的長;
(III)若與面積相等,求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平面平面,四邊形和是全等的等腰梯形,其中,且,點為的中點,點是的中點.
(I)請在圖中所給的點中找出兩個點,使得這兩個點所在直線與平面垂直,并給出證明;
(II)求二面角的余弦值;
(III)在線段上是否存在點,使得平面?如果存在,求出的長度,如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點,求拋物線C的方程;
(2)已知拋物線C上存在關(guān)于直線l對稱的相異兩點P和Q.
①求證:線段PQ的中點坐標為(2-p , -p);
②求p的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.
(1)求E的方程;
(2)設(shè)過點A的動直線l與E相交于P,Q兩點.當(dāng)△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】【選做題】本題包括A、B、C、D四小題,請選定其中兩小題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩小題評分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
(1)A.【選修4—1幾何證明選講】
如圖,在△ABC中,∠ABC=90°,BD⊥AC , D為垂足,E是BC的中點,求證:∠EDC=∠ABD.
(2)B.【選修4—2:矩陣與變換】
已知矩陣A= 矩陣B的逆矩陣B﹣1= ,求矩陣AB.
(3)【選修4—4:坐標系與參數(shù)方程】在平面直角坐標系xOy中,已知直線l的參數(shù)方程為 (t為參數(shù)),橢圓C的參數(shù)方程為 ( 為參數(shù)).設(shè)直線l與橢圓C相交于A , B兩點,求線段AB的長.
(4)D. 設(shè)a>0,|x﹣1|< ,|y﹣2|< ,求證:|2x+y﹣4|<a.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】記U={1,2,…,100},對數(shù)列{an}(n∈N*)和U的子集T,若T=,定義ST=0;若T={t1 , t2 , …,tk},定義ST= + +…+ .例如:T={1,3,66}時,ST=a1+a3+a66 . 現(xiàn)設(shè){an}(n∈N*)是公比為3的等比數(shù)列,且當(dāng)T={2,4}時,ST=30.
(1)求數(shù)列{an}的通項公式;
(2)對任意正整數(shù)k(1≤k≤100),若T{1,2,…,k},求證:ST<ak+1;
(3)設(shè)CU,DU,SC≥SD , 求證:SC+SC∩D≥2SD .
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且2asin A=(2b+c)sin B+(2c+b)sin C.
(1)求A的大小; (2)若sin B+sin C=1,試判斷△ABC的形狀.(12分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com