相關(guān)習(xí)題
 0  259404  259412  259418  259422  259428  259430  259434  259440  259442  259448  259454  259458  259460  259464  259470  259472  259478  259482  259484  259488  259490  259494  259496  259498  259499  259500  259502  259503  259504  259506  259508  259512  259514  259518  259520  259524  259530  259532  259538  259542  259544  259548  259554  259560  259562  259568  259572  259574  259580  259584  259590  259598  266669 

科目: 來源: 題型:

【題目】若函數(shù) 的圖象向左平移 個單位,得到的函數(shù)圖象的對稱中心與f(x)圖象的對稱中心重合,則ω的最小值是(
A.1
B.2
C.4
D.8

查看答案和解析>>

科目: 來源: 題型:

【題目】在△ABC 內(nèi)部取n 個點, 將△ABC剖分為若干個小三角形(每兩個小三角形或者有一個公共頂點,或者有一條公共邊,或者完全沒有公共點,如圖所示).現(xiàn)將點A 染紅色, 點B 染藍(lán)色,點C 染黑色,其余n 個點的每個點也任意染上紅、藍(lán)、黑三色之一.我們稱三個頂點的顏色恰為紅、藍(lán)、黑的小三角形為“特征三角形”.證明:至少有一個小三角形是特征三角形.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,棱柱ABCD-A1B1C1D1中,底面ABCD是平行四邊形,側(cè)棱AA1⊥底面ABCD,AB=1,AC=,BC=BB1=2.

(Ⅰ)求證:AC⊥平面ABB1A1;

(Ⅱ)求點D到平面ABC1的距離d.

查看答案和解析>>

科目: 來源: 題型:

【題目】某校為了了解學(xué)生對消防知識的了解情況,從高一年級和高二年級各選取100名同學(xué)進行消防知識競賽.下圖(1)和下圖(2)分別是對高一年級和高二年級參加競賽的學(xué)生成績按, , 分組,得到的頻率分布直方圖.

(1)請計算高一年級和高二年級成績小于60分的人數(shù);

(2)完成下面列聯(lián)表,并回答:有多大的把握可以認(rèn)為“學(xué)生所在的年級與消防常識的了解存在相關(guān)性”?

附:臨界值表及參考公式: , .

查看答案和解析>>

科目: 來源: 題型:

【題目】已知命題p:x∈(1,+∞), >1;命題q:a∈(0,1),函數(shù)y=ax在(﹣∞,+∞)上為減函數(shù),則下列命題為真命題的是(
A.p∧q
B.¬p∧q
C.p∧¬q
D.¬p∧¬q

查看答案和解析>>

科目: 來源: 題型:

【題目】某旅游點有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元.根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3輛.

規(guī)定:每輛自行車的日租金不超過20元,每輛自行車的日租金x元只取整數(shù),并要求出租所有自行車一日的總收入必須超過一日的管理費用,用y表示出租所有自行車的日凈收入(即一日中出租所有自行車的總收入減去管理費后的所得).

(1)求函數(shù)y=f(x)的解析式及定義域;

(2)試問日凈收入最多時每輛自行車的日租金應(yīng)定為多少元?日凈收入最多為多少元?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù), .

(1)求證:對,函數(shù)存在相同的增區(qū)間;

(2)若對任意的, ,都有成立,求正整數(shù)的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=emx+x2﹣mx(m∈R).
(1)當(dāng)m=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若m<0,且曲線y=f(x)在點(1,f(1))處的切線與直線x+(e+1)y=0垂直.
(i)當(dāng)x>0時,試比較f(x)與f(﹣x)的大。
(ii)若對任意x1 , x2(x1≠x2),且f(x1)=f(x2),證明:x1+x2<0.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 的離心率為,依次連接橢圓的四個頂點得到的菱形面積為4.

(1)求橢圓的方程;

(2)過點且斜率為的直線交橢圓, 兩點,設(shè)面積之比為(其中為坐標(biāo)原點),當(dāng)時,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點F1 , F2在軸上,焦距為2,離心率為
(1)求橢圓C的方程;
(2)若P是橢圓C上第一象限內(nèi)的點,△PF1F2的內(nèi)切圓的圓心為I,半徑為 .求:
(i)點P的坐標(biāo);
(ii)直線PI的方程.

查看答案和解析>>

同步練習(xí)冊答案