科目: 來源: 題型:
【題目】給出下面四個推理:
①由“若是實數(shù),則”推廣到復(fù)數(shù)中,則有“若是復(fù)數(shù),則”;
②由“在半徑為R的圓內(nèi)接矩形中,正方形的面積最大”類比推出“在半徑為R的球內(nèi)接長方體中,正方體的體積最大”;
③以半徑R為自變量,由“圓面積函數(shù)的導(dǎo)函數(shù)是圓的周長函數(shù)”類比推出“球體積函數(shù)的導(dǎo)函數(shù)是球的表面積函數(shù)”;
④由“直角坐標(biāo)系中兩點、的中點坐標(biāo)為”類比推出“極坐標(biāo)系中兩點、的中點坐標(biāo)為”.
其中,推理得到的結(jié)論是正確的個數(shù)有( )個
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)在,很多人都喜歡騎“共享單車”,但也有很多市民并不認(rèn)可.為了調(diào)查人們對這種交通方式的認(rèn)可度,某同學(xué)從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機(jī)調(diào)查了20名市民,得到了一個市民是否認(rèn)可的樣本,具體數(shù)據(jù)如下列聯(lián)表:
附:,.
根據(jù)表中的數(shù)據(jù),下列說法中,正確的是( )
A. 沒有95% 以上的把握認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
B. 有99% 以上的把握認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
C. 可以在犯錯誤的概率不超過0.01的前提下認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
D. 可以在犯錯誤的概率不超過0.025的前提下認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列的前項和為,對任意滿足,且,數(shù)列滿足,其前9項和為63.
(1)求數(shù)列和的通項公式;
(2)令,數(shù)列的前項和為,若對任意正整數(shù),都有,求實數(shù)的取值范圍;
(3)將數(shù)列的項按照“當(dāng)為奇數(shù)時,放在前面;當(dāng)為偶數(shù)時,放在前面”的要求進(jìn)行“交叉排列”,得到一個新的數(shù)列:,求這個新數(shù)列的前項和.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù) . (I)求函數(shù)f(x)的最小正周期和最小值;
(II)在△ABC中,A,B,C的對邊分別為a,b,c,已知 ,求a,b的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校高三年級有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
附:K2= .
查看答案和解析>>
科目: 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出n的值為( ) (參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)
A.12
B.24
C.36
D.48
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分圖象如圖所示,為了得到g(x)=Acosωx的圖象,只需將函數(shù)y=f(x)的圖象( )
A.向左平移 個單位長度
B.向左平移 個單位長度
C.向右平移 個單位長度
D.向右平移 個單位長度
查看答案和解析>>
科目: 來源: 題型:
【題目】以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知點M的直角坐標(biāo)為(1,0),若直線l的極坐標(biāo)方程為 ρcos(θ+ )﹣1=0,曲線C的參數(shù)方程是 (t為參數(shù)).
(1)求直線l和曲線C的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點,求 + .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=xex﹣a(lnx+x).
(1)若函數(shù)f(x)恒有兩個零點,求a的取值范圍;
(2)若對任意x>0,恒有不等式f(x)≥1成立. ①求實數(shù)a的值;
②證明:x2ex>(x+2)lnx+2sinx.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知A(﹣1,0),B(1,0), = + ,| |+| |=4
(1)求P的軌跡E
(2)過軌跡E上任意一點P作圓O:x2+y2=3的切線l1 , l2 , 設(shè)直線OP,l1 , l2的斜率分別是k0 , k1 , k2 , 試問在三個斜率都存在且不為0的條件下, ( + )是否是定值,請說明理由,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com