科目: 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務(wù)所需時間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?
附:,
查看答案和解析>>
科目: 來源: 題型:
【題目】某汽車公司對最近6個月內(nèi)的市場占有率進(jìn)行了統(tǒng)計,結(jié)果如表;
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
市場占有率 | 11 | 13 | 16 | 15 | 20 | 21 |
(1)可用線性回歸模型擬合與之間的關(guān)系嗎?如果能,請求出關(guān)于的線性回歸方程,如果不能,請說明理由;
(2)公司決定再采購兩款車擴(kuò)大市場, 兩款車各100輛的資料如表:
車型 | 報廢年限(年) | 合計 | 成本 | |||
1 | 2 | 3 | 4 | |||
10 | 30 | 40 | 20 | 100 | 1000元/輛 | |
15 | 40 | 35 | 10 | 100 | 800元/輛 |
平均每輛車每年可為公司帶來收入元,不考慮采購成本之外的其他成本,假設(shè)每輛車的使用壽命部是整數(shù)年,用每輛車使用壽命的頻率作為概率,以每輛車產(chǎn)生利潤的平均數(shù)作為決策依據(jù),應(yīng)選擇采購哪款車型?
參考數(shù)據(jù): ,,,.
參考公式:相關(guān)系數(shù);
回歸直線方程為,其中,.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市政府為了引導(dǎo)居民合理用水,決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價:若用水量不超過12噸時,按4元/噸計算水費;若用水量超過12噸且不超過14噸時,超過12噸部分按6.60元/噸計算水費;若用水量超過14噸時,超過14噸部分按7.80元/噸計算水費.為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照[0,2],(2,4],…,(14,16]分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)假設(shè)用抽到的100戶居民月用水量作為樣本估計全市的居民用水情況.
( i)現(xiàn)從全市居民中依次隨機(jī)抽取5戶,求這5戶居民恰好3戶居民的月用水用量都超過12噸的概率;
(ⅱ)試估計全市居民用水價格的期望(精確到0.01);
(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費y(元)與月份x的散點圖,其擬合的線性回歸方程是 .若李某2016年1~7月份水費總支出為294.6元,試估計李某7月份的用水噸數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】在正整數(shù)數(shù)列中,由1開始按如下規(guī)則依次取它的項:第一次取1;第二次取2個連續(xù)偶數(shù);第三次取3個連續(xù)奇數(shù);第四次取4個連續(xù)偶數(shù);第五次取5個連續(xù)奇數(shù);……按此規(guī)律取下去,得到一個子數(shù)列,,……則在這個子數(shù)列中,第個數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】給出下列四個命題:①命題“若,則”的逆否命題為假命題:
②命題“若,則”的否命題是“若,則”;
③若“”為真命題,“”為假命題,則為真命題,為假命題;
④函數(shù)有極值的充要條件是或 .
其中正確的個數(shù)有( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進(jìn)行視力調(diào)查。
(I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目。
(II)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,
(1)列出所有可能的抽取結(jié)果;
(2)求抽取的2所學(xué)校均為小學(xué)的概率。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,底面ABCD是平行四邊形,∠ABC=45°,AD=AP=2, ,E為CD的中點,點F在線段PB上.
(Ⅰ)求證:AD⊥PC;
(Ⅱ)試確定點F的位置,使得直線EF與平面PDC所成的角和直線EF與平面ABCD所成的角相等.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且B=60°,c=4.
(Ⅰ)若b=6,求角C的正弦值及△ABC的面積;
(Ⅱ)若D,E在線段BC上,且BD=DE=EC, ,求AD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:函數(shù)和在公共定義域內(nèi),恒成立;
(3)若存在兩個不同的實數(shù),,滿足,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com