科目: 來(lái)源: 題型:
【題目】設(shè)A,B分別為雙曲線 (a>0,b>0)的左、右頂點(diǎn),雙曲線的實(shí)軸長(zhǎng)為4,焦點(diǎn)到漸近線的距離為.
(1)求雙曲線的方程;
(2)已知直線y=x-2與雙曲線的右支交于M,N兩點(diǎn),且在雙曲線的右支上存在點(diǎn)D,使,求t的值及點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)雙曲線C: (a>0,b>0)的左、右焦點(diǎn)分別為F1,F2,|F1F2|=2c,過(guò)F2作x軸的垂線與雙曲線在第一象限的交點(diǎn)為A,已知Q,|F2Q|>|F2A|,點(diǎn)P是雙曲線C右支上的動(dòng)點(diǎn),且|PF1|+|AQ|>|F1F2|恒成立,則雙曲線的離心率的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)f(x)=|a﹣x|(a∈R)
(Ⅰ)當(dāng)a= 時(shí),求使不等式f(2x﹣ )>2f(x+2)+2成立的x的集合A;
(Ⅱ)設(shè)x0∈A,證明f(x0x)≥x0f(x)+f(ax0).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知雙曲線C: (a>0,b>0)的離心率為2,右頂點(diǎn)為(1,0).
(1)求雙曲線C的方程;
(2)設(shè)直線y=-x+m與y軸交于點(diǎn)P,與雙曲線C的左、右支分別交于點(diǎn)Q,R,且=2,求m的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),將曲線C1上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的 ,縱坐標(biāo)縮短為原來(lái)的 ,得到曲線C2 , 在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為4ρsin(θ+ )+ =0.
(1)求曲線C2的極坐標(biāo)方程及直線l與曲線C2交點(diǎn)的極坐標(biāo);
(2)設(shè)點(diǎn)P為曲線C1上的任意一點(diǎn),求點(diǎn)P到直線l的距離的最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ .
(1)若函數(shù)f(x)在定義域內(nèi)不單調(diào),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)在區(qū)間(0,1]內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)若x1、x2∈R+ , 且x1≤x2 , 求證:(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓C; =1(a>b>c)的左、右焦點(diǎn)分別為F1(﹣c,0)、F2(c,0),過(guò)原點(diǎn)O的直線(與x軸不重合)與橢圓C相交于D、Q兩點(diǎn),且|DF1|+|QF1|=4,P為橢圓C上的動(dòng)點(diǎn),△PF1F2的面積的最大值為 .
(1)求橢圓C的離心率;
(2)若A、B是橢圓C上關(guān)于x軸對(duì)稱的任意兩點(diǎn),設(shè)點(diǎn)N(﹣4,0),連接NA與橢圓C相交于點(diǎn)E,直線BE與x軸相交于點(diǎn)M,試求 的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,直四棱柱ABCD﹣A1B1C1D1的底面ABCD是直角梯形,其中AB⊥AD,AB=2AD=2AA1=4,CD=1.
(Ⅰ)證明:BD1⊥平面A1C1D;
(Ⅱ)求BD1與平面A1BC1所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com