相關(guān)習(xí)題
 0  260508  260516  260522  260526  260532  260534  260538  260544  260546  260552  260558  260562  260564  260568  260574  260576  260582  260586  260588  260592  260594  260598  260600  260602  260603  260604  260606  260607  260608  260610  260612  260616  260618  260622  260624  260628  260634  260636  260642  260646  260648  260652  260658  260664  260666  260672  260676  260678  260684  260688  260694  260702  266669 

科目: 來源: 題型:

【題目】已知橢圓C的長軸長為 ,左焦點(diǎn)的坐標(biāo)為(﹣2,0);
(1)求C的標(biāo)準(zhǔn)方程;
(2)設(shè)與x軸不垂直的直線l過C的右焦點(diǎn),并與C交于A、B兩點(diǎn),且 ,試求直線l的傾斜角.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知正三棱柱ABC﹣A1B1C1的底面積為 ,側(cè)面積為36;
(1)求正三棱柱ABC﹣A1B1C1的體積;
(2)求異面直線A1C與AB所成的角的大。

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把位于直線y=k與直線y=l(k、l均為常數(shù),且k<l)之間的點(diǎn)所組成區(qū)域(含直線y=k,直線y=l)稱為“k⊕l型帶狀區(qū)域”,設(shè)f(x)為二次函數(shù),三點(diǎn)(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型帶狀區(qū)域”,如果點(diǎn)(t,t+1)位于“﹣1⊕3型帶狀區(qū)域”,那么,函數(shù)y=|f(t)|的最大值為(
A.
B.3
C.
D.2

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)M,N為兩個隨機(jī)事件,給出以下命題: (1.)若M、N為互斥事件,且 ,則 ;
(2.)若 , ,則M、N為相互獨(dú)立事件;
(3.)若 , ,則M、N為相互獨(dú)立事件;
(4.)若 , ,則M、N為相互獨(dú)立事件;
(5.)若 , ,則M、N為相互獨(dú)立事件;
其中正確命題的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目: 來源: 題型:

【題目】某中學(xué)的高一、高二、高三共有學(xué)生1350人,其中高一500人,高三比高二少50人,為了解該校學(xué)生健康狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有高一學(xué)生120人,則該樣本中的高二學(xué)生人數(shù)為(
A.80
B.96
C.108
D.110

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a、b∈M,
(1)證明:| a+ b|< ;
(2)比較|1﹣4ab|與2|a﹣b|的大小,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ
(1)求圓C的直角坐標(biāo)方程;
(2)若點(diǎn)P(1,2),設(shè)圓C與直線l交于點(diǎn)A、B,求 的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣k(x﹣1)
(1)求f(x)的單調(diào)區(qū)間;并證明lnx+ ≥2(e為自然對數(shù)的底數(shù))恒成立;
(2)若函數(shù)f(x)的一個零點(diǎn)為x1(x1>1),f'(x)的一個零點(diǎn)為x0 , 是否存在實(shí)數(shù)k,使 =k,若存在,求出所有滿足條件的k的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】從某市統(tǒng)考的學(xué)生數(shù)學(xué)考試卷中隨機(jī)抽查100份數(shù)學(xué)試卷作為樣本,分別統(tǒng)計出這些試卷總分,由總分得到如下的頻率分布直方圖.
(1)求這100份數(shù)學(xué)試卷的樣本平均分 和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)
(2)由直方圖可以認(rèn)為,這批學(xué)生的數(shù)學(xué)總分Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù) ,σ2近似為樣本方差s2 . ①利用該正態(tài)分布,求P(81<z<119);
②記X表示2400名學(xué)生的數(shù)學(xué)總分位于區(qū)間(81,119)的人數(shù),利用①的結(jié)果,求EX(用樣本的分布區(qū)估計總體的分布).
附: ≈19, ≈18,若Z=~N(μ,2),則P(μ﹣σ2),則P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,Q為AD的中點(diǎn),M是棱PC的中點(diǎn),PA=PD=PC,BC= AD=2,CD=4
(1)求證:直線PA∥平面QMB;
(2)若二面角P﹣AD﹣C為60°,求直線PB與平面QMB所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案