科目: 來源: 題型:
【題目】已知F1 , F2為橢圓 的左、右焦點,F(xiàn)2在以 為圓心,1為半徑的圓C2上,且|QF1|+|QF2|=2a.
(1)求橢圓C1的方程;
(2)過點P(0,1)的直線l1交橢圓C1于A,B兩點,過P與l1垂直的直線l2交圓C2于C,D兩點,M為線段CD中點,求△MAB面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣1.
(1)對于任意的1≤x≤2,不等式4m2|f(x)|+4f(m)≤|f(x﹣1)|恒成立,求實數(shù)m的取值范圍;
(2)若對任意實數(shù)x1∈[1,2].存在實數(shù)x2∈[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在多面體EF﹣ABCD中,ABCD,ABEF均為直角梯形, ,DCEF為平行四邊形,平面DCEF⊥平面ABCD.
(1)求證:DF⊥平面ABCD;
(2)若△ABD是等邊三角形,且BF與平面DCEF所成角的正切值為 ,求二面角A﹣BF﹣C的平面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別是a,b,c,且a=2,2cos2 +sinA= .
(1)若滿足條件的△ABC有且只有一個,求b的取值范圍;
(2)當(dāng)△ABC的周長取最大值時,求b的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,∠BAC=10°,∠ACB=30°,將直線BC繞AC旋轉(zhuǎn)得到B1C,直線AC繞AB旋轉(zhuǎn)得到AC1 , 則在所有旋轉(zhuǎn)過程中,直線B1C與直線AC1所成角的取值范圍為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】對于定義在R上的函數(shù)f(x),如果存在實數(shù)a,使得f(a+x)f(a﹣x)=1對任意實數(shù)x∈R恒成立,則稱f(x)為關(guān)于a的“倒函數(shù)”.已知定義在R上的函數(shù)f(x)是關(guān)于0和1的“倒函數(shù)”,且當(dāng)x∈[0,1]時,f(x)的取值范圍為[1,2],則當(dāng)x∈[1,2]時,f(x)的取值范圍為 , 當(dāng)x∈[﹣2016,2016]時,f(x)的取值范圍為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知F1 , F2分別是雙曲線C: =1(a>0,b>0)的左、右焦點,其離心率為e,點B的坐標(biāo)為(0,b),直線F1B與雙曲線C的兩條漸近線分別交于P,Q兩點,線段PQ的垂直平分線與x軸,直線F1B的交點分別為M,R,若△RMF1與△PQF2的面積之比為e,則雙曲線C的離心率為( )
A.
B.
C.2
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+φ),其中φ為實數(shù),若f(x)≤|f( )|對x∈R恒成立,且f( )>f(π),則f(x)的單調(diào)遞增區(qū)間是( )
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com