相關(guān)習(xí)題
 0  260528  260536  260542  260546  260552  260554  260558  260564  260566  260572  260578  260582  260584  260588  260594  260596  260602  260606  260608  260612  260614  260618  260620  260622  260623  260624  260626  260627  260628  260630  260632  260636  260638  260642  260644  260648  260654  260656  260662  260666  260668  260672  260678  260684  260686  260692  260696  260698  260704  260708  260714  260722  266669 

科目: 來源: 題型:

【題目】已知F1 , F2為橢圓 的左、右焦點,F(xiàn)2在以 為圓心,1為半徑的圓C2上,且|QF1|+|QF2|=2a.

(1)求橢圓C1的方程;
(2)過點P(0,1)的直線l1交橢圓C1于A,B兩點,過P與l1垂直的直線l2交圓C2于C,D兩點,M為線段CD中點,求△MAB面積的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣1.
(1)對于任意的1≤x≤2,不等式4m2|f(x)|+4f(m)≤|f(x﹣1)|恒成立,求實數(shù)m的取值范圍;
(2)若對任意實數(shù)x1∈[1,2].存在實數(shù)x2∈[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在多面體EF﹣ABCD中,ABCD,ABEF均為直角梯形, ,DCEF為平行四邊形,平面DCEF⊥平面ABCD.

(1)求證:DF⊥平面ABCD;
(2)若△ABD是等邊三角形,且BF與平面DCEF所成角的正切值為 ,求二面角A﹣BF﹣C的平面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別是a,b,c,且a=2,2cos2 +sinA=
(1)若滿足條件的△ABC有且只有一個,求b的取值范圍;
(2)當(dāng)△ABC的周長取最大值時,求b的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在△ABC中,∠BAC=10°,∠ACB=30°,將直線BC繞AC旋轉(zhuǎn)得到B1C,直線AC繞AB旋轉(zhuǎn)得到AC1 , 則在所有旋轉(zhuǎn)過程中,直線B1C與直線AC1所成角的取值范圍為

查看答案和解析>>

科目: 來源: 題型:

【題目】對于定義在R上的函數(shù)f(x),如果存在實數(shù)a,使得f(a+x)f(a﹣x)=1對任意實數(shù)x∈R恒成立,則稱f(x)為關(guān)于a的“倒函數(shù)”.已知定義在R上的函數(shù)f(x)是關(guān)于0和1的“倒函數(shù)”,且當(dāng)x∈[0,1]時,f(x)的取值范圍為[1,2],則當(dāng)x∈[1,2]時,f(x)的取值范圍為 , 當(dāng)x∈[﹣2016,2016]時,f(x)的取值范圍為

查看答案和解析>>

科目: 來源: 題型:

【題目】若函數(shù)f(x)= 為奇函數(shù),則a= , f(g(﹣2))=

查看答案和解析>>

科目: 來源: 題型:

【題目】已知F1 , F2分別是雙曲線C: =1(a>0,b>0)的左、右焦點,其離心率為e,點B的坐標(biāo)為(0,b),直線F1B與雙曲線C的兩條漸近線分別交于P,Q兩點,線段PQ的垂直平分線與x軸,直線F1B的交點分別為M,R,若△RMF1與△PQF2的面積之比為e,則雙曲線C的離心率為(
A.
B.
C.2
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+φ),其中φ為實數(shù),若f(x)≤|f( )|對x∈R恒成立,且f( )>f(π),則f(x)的單調(diào)遞增區(qū)間是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

查看答案和解析>>

科目: 來源: 題型:

【題目】數(shù)列{an}中,已知a1= ,an+1=
(1)證明:an<an+1
(2)證明:當(dāng)n≥2時,( <2.

查看答案和解析>>

同步練習(xí)冊答案