科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,過橢圓 右焦點的直線 交橢圓C于M,N兩點,P為M,N的中點,且直線OP的斜率為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)另一直線l與橢圓C交于A,B兩點,原點O到直線l的距離為 ,求△AOB面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列命題中,錯誤的命題個數(shù)有( )
①是為奇函數(shù)的必要非充分條件;
②函數(shù)是偶函數(shù);
③函數(shù)的最小值是;
④函數(shù)的定義域為,且對其內(nèi)任意實數(shù)、均有:,則在上是減函數(shù).
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如甲圖所示,在矩形ABCD中,AB=4,AD=2,E是CD的中點,將△ADE沿AE折起到△D1AE位置,使平面D1AE⊥平面ABCE,得到乙圖所示的四棱錐D1﹣ABCE.
(Ⅰ)求證:BE⊥平面D1AE;
(Ⅱ)求二面角A﹣D1E﹣C的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在某單位的職工食堂中,食堂每天以3元/個的價格從面包店購進面包,然后以5元/個的價格出售.如果當(dāng)天賣不完,剩下的面包以1元/個的價格賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了90個面包,以x(單位:個,60≤x≤110)表示面包的需求量,T(單位:元)表示利潤.
(Ⅰ)求T關(guān)于x的函數(shù)解析式;
(Ⅱ)根據(jù)直方圖估計利潤T不少于100元的概率;
(Ⅲ)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量x∈[60,70),則取x=65,且x=65的概率等于需求量落入[60,70)的頻率),求T的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,a,b,c成等比數(shù)列,且a2﹣c2=ac﹣bc.
(Ⅰ)求∠A的大小;
(Ⅱ)若a= ,且sinA+sin(B﹣C)=2sin2C,求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均為正實數(shù),且滿足a+b+c=m,求證: ≥3.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系xoy中,已知點P(0, ),曲線C的參數(shù)方程為 (φ為參數(shù)).以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ= .
(Ⅰ)判斷點P與直線l的位置關(guān)系并說明理由;
(Ⅱ)設(shè)直線l與曲線C的兩個交點分別為A,B,求 的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:f(x2)≥( ﹣1)x2 .
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,過橢圓 右焦點的直線 交橢圓C于M,N兩點,P為M,N的中點,且直線OP的斜率為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)另一直線l與橢圓C交于A,B兩點,原點O到直線l的距離為 ,求△AOB面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如甲圖所示,在矩形ABCD中,AB=4,AD=2,E是CD的中點,將△ADE沿AE折起到△D1AE位置,使平面D1AE⊥平面ABCE,得到乙圖所示的四棱錐D1﹣ABCE.
(Ⅰ)求證:BE⊥平面D1AE;
(Ⅱ)求二面角A﹣D1E﹣C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com