科目: 來源: 題型:
【題目】如圖,長方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點(diǎn)E、F分別在A1B1、C1D1上,A1E=D1F=4,過點(diǎn)E,F的平面與此長方體的面相交,交線圍成一個(gè)正方形。
(1)(Ⅰ)在圖中畫出這個(gè)正方形(不必說出畫法和理由);
(2)(Ⅱ)求直線AF與平面所成角的正弦值
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司為了解用戶對(duì)其產(chǎn)品的滿意度,從A,B兩地區(qū)分別隨機(jī)調(diào)查了20個(gè)用戶,得到用戶對(duì)產(chǎn)品的滿意度平分如下:
A地區(qū):62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B地區(qū):73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
(1)(I)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶滿意度評(píng)分的莖葉圖,并通過莖葉圖比較兩地區(qū)滿意度評(píng)分的平均值及分散程度(不要求計(jì)算出具體值,得出結(jié)論即可)
(2)(II)根據(jù)用戶滿意度評(píng)分,將用戶的滿意度從低到高分為三個(gè)等級(jí):
|
|
|
|
|
|
|
|
記時(shí)間C:“A地區(qū)用戶的滿意度等級(jí)高于B地區(qū)用戶的滿意度等級(jí)”,假設(shè)兩地區(qū)用戶的評(píng)價(jià)結(jié)果相互獨(dú)立。根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率。
查看答案和解析>>
科目: 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一周期內(nèi)的圖像時(shí),列表并填入的部分?jǐn)?shù)據(jù)如下表:
| |||||
0 |
|
| |||
0 | 1 | 0 |
| 0 | |
0 | 0 | 0 |
(1)請(qǐng)寫出上表的及函數(shù)的解析式;
(2)將函數(shù)的圖像向右平移個(gè)單位,再將所得圖像上各點(diǎn)的橫坐標(biāo)縮小為原來的,縱坐標(biāo)不變,得到函數(shù)的圖像,求的解析式及的單調(diào)遞增區(qū)間;
(3)在(2)的條件下,若在上恰有奇數(shù)個(gè)零點(diǎn),求實(shí)數(shù)與零點(diǎn)個(gè)數(shù)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】
(2015·新課標(biāo)Ⅱ)設(shè)函數(shù)f‘(x)是奇函數(shù)f(x)(xR)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x0時(shí),xf'(x)-f(x)0,則使得f(x)0成立的x的取值范圍是()
A.(-,-1)(0,1)
B.(-1,0)(1,+)
C.(-,-1)(-1,0)
D.(0,1)(1,+)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,長方形ABCD的邊AB=2,BC=1,O是AB的中點(diǎn),點(diǎn)P沿著邊BC,CD與DA運(yùn)動(dòng),記BOP=x,將動(dòng)P到A、B兩點(diǎn)距離之和表示為x的函數(shù)f(x),則y=f(x)的圖像大致為()
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)a,b,c,d均為正數(shù),且a+b=c+d,證明:(1)若ab > cd,則 +>+ ;(2) + > + 是|a-b| < |c-d|的充要條件
(1)(I)若abcd,則++
(2)(II)++是|a-b||c-d|的充要條件
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1:(t為參數(shù),且t≠0),其中0 , 在以O(shè)為極點(diǎn)x軸正半軸為極軸的極坐標(biāo)系中,曲線C2::=2sin , C3:=2cos
(1)求C2與C3交點(diǎn)的直角坐標(biāo)
(2)若C1與C2相交于點(diǎn)A,C1與C3相交于點(diǎn)B,求|AB|最大值
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖O是等腰三角形ABC內(nèi)一點(diǎn),圓O與△ABC的底邊BC交于M,N兩點(diǎn),與底邊上的高交于點(diǎn)G,且與AB,AC分別相切于E,F兩點(diǎn).
(1)(I)證明EF//BC
(2)(II)若AG等于圓O半徑,且AE=MN=2,求四邊形EBCF的面積
查看答案和解析>>
科目: 來源: 題型:
【題目】已知f(x)=lnx+a(1-x),問:(1)討論f(x) 的單調(diào)性;(2)當(dāng) f(x)有最大值,且最大值大于2a-2 時(shí),求a的取值范圍.
(1)(I)討論f(x) 的單調(diào)性;
(2)(II)當(dāng) f(x)有最大值,且最大值大于2a-2 時(shí),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com