相關習題
 0  261646  261654  261660  261664  261670  261672  261676  261682  261684  261690  261696  261700  261702  261706  261712  261714  261720  261724  261726  261730  261732  261736  261738  261740  261741  261742  261744  261745  261746  261748  261750  261754  261756  261760  261762  261766  261772  261774  261780  261784  261786  261790  261796  261802  261804  261810  261814  261816  261822  261826  261832  261840  266669 

科目: 來源: 題型:

【題目】已知函數(shù),其中.

1)當,求函數(shù)的單調區(qū)間

2)若對于任意,都有恒成立的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,在矩形中,,分別是的中點,分別是的中點,將四邊形,分別沿,折起,使平面平面,平面平面,如圖2所示,上一點,且.

(1)求證:;

(2)線段上是否存在點,使得?若存在,求出的長,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓的圓心在拋物線上,圓過原點且與拋物線的準線相切.

(1)求該拋物線的方程;

(2)過拋物線焦點的直線交拋物線于, 兩點,分別在點, 處作拋物線的兩條切線交于點,求三角形面積的最小值及此時直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在邊長為2的正方形中,分別為的中點,的中點,沿將正方形折起,使重合于點,在構成的四面體中,下列結論錯誤的是

A. 平面

B. 直線與平面所成角的正切值為

C. 四面體的內切球表面積為

D. 異面直線所成角的余弦值為

查看答案和解析>>

科目: 來源: 題型:

【題目】某產品生產廠家根據(jù)以往銷售經驗得到下面有關生產銷售的統(tǒng)計規(guī)律:每生產產品x(百臺),其總成本為g(x)(萬元),其中固定成本為2萬元,并且每生產1百臺的生產成本為1萬元(總成本=固定成本+生產成本),銷售收入R(x)(萬元)滿足假設該產品產銷平衡,試根據(jù)上述資料

(Ⅰ)要使工廠有盈利,產量x應控制在什么范圍內;

(Ⅱ)工廠生產多少臺產品時,可使盈利最多?

(Ⅲ)當盈利最多時,求每臺產品的售價.

查看答案和解析>>

科目: 來源: 題型:

【題目】隨著網絡的發(fā)展,網上購物越來越受到人們的喜愛,各大購物網站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加.下表是某購物網站2017年1-8月促銷費用(萬元)和產品銷量(萬件)的具體數(shù)據(jù).

1)根據(jù)數(shù)據(jù)繪制的散點圖能夠看出可用線性回歸模型擬合的關系,請用相關系數(shù)加以說明;(系數(shù)精確到0.001

2)建立關于的回歸方程(系數(shù)精確到0.01);如果該公司計劃在9月份實現(xiàn)產品銷量超6萬件,預測至少需投入促銷費用多少萬元(結果精確到0.01.

參考數(shù)據(jù) , , , ,其中, 分別為第個月的促銷費用和產品銷量, .

參考公式:(1)樣本的相關系數(shù)

2)對于一組數(shù)據(jù), , , ,其回歸方程的斜率和截距的最小二乘估計分別為, .

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且.

(1)確定的解析式;

2)判斷并證明上的單調性;

3)解不等式.

查看答案和解析>>

科目: 來源: 題型:

【題目】某學校兩個班的數(shù)學興趣小組在一次數(shù)學對抗賽中的成績繪制莖葉圖如下,通過莖葉圖比較兩班數(shù)學興趣小組成績的平均值及方差

班數(shù)學興趣小組的平均成績高于班的平均成績

班數(shù)學興趣小組的平均成績高于班的平均成績

班數(shù)學興趣小組成績的標準差大于班成績的標準差

班數(shù)學興趣小組成績的標準差大于班成績的標準差

其中正確結論的編號為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,已知點A(-,0),B(,0),直線MA,MB交于點M,它們的斜率之積為常數(shù)m(m≠0),且△MAB的面積最大值為,設動點M的軌跡為曲線E.

(1)求曲線E的方程;

(2)過曲線E外一點QE的兩條切線l1,l2,若它們的斜率之積為-1,那么·是否為定值?若是,請求出該值;若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1)判斷并證明的奇偶性;

2)求使的取值范圍;

3)若,是否存在實數(shù),使得有三個不同的零點,若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案