科目: 來源: 題型:
【題目】如圖所示為一正方體的平面展開圖,在這個正方體中,有下列四個命題:
①AF⊥GC;
②BD與GC成異面直線且夾角為60;
③BD∥MN;
④BG與平面ABCD所成的角為45.
其中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)對一塊長米,寬米的矩形場地ABCD進(jìn)行改造,點E為線段BC的中點,點F在線段CD或AD上(異于A,C),設(shè)(單位:米),的面積記為(單位:平方米),其余部分面積記為(單位:平方米).
(1)求函數(shù)的解析式;
(2)設(shè)該場地中部分的改造費用為(單位:萬元),其余部分的改造費用為(單位:萬元),記總的改造費用為W單位:萬元),求W最小值,并求取最小值時x的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】1766年;人類已經(jīng)發(fā)現(xiàn)的太陽系中的行星有金星、地球、火星、木星和土星.德國的一位中學(xué)教師戴維一提丟斯在研究了各行星離太陽的距離(單位:AU,AU是天文學(xué)中計量天體之間距離的一種單位)的排列規(guī)律后,預(yù)測在火星和木星之間應(yīng)該還有一顆未被發(fā)現(xiàn)的行星存在,并按離太陽的距離從小到大列出了如下表所示的數(shù)據(jù):
行星編號(x) | 1(金星) | 2(地球) | 3(火星) | 4( ) | 5(木星) | 6(土星) |
離太陽的距離(y) | 0.7 | 1.0 | 1.6 | 5.2 | 10.0 |
受他的啟發(fā),意大利天文學(xué)家皮亞齊于1801年終于發(fā)現(xiàn)了位于火星和木星之間的谷神星.
(1)為了描述行星離太陽的距離y與行星編號之間的關(guān)系,根據(jù)表中已有的數(shù)據(jù)畫出散點圖,并根據(jù)散點圖的分布狀況,從以下三種模型中選出你認(rèn)為最符合實際的一種函數(shù)模型(直接給出結(jié)論即可);
①;②;③.
(2)根據(jù)你的選擇,依表中前幾組數(shù)據(jù)求出函數(shù)解析式,并用剩下的數(shù)據(jù)檢驗?zāi)P偷奈呛锨闆r;
(3)請用你求得的模型,計算谷神星離太陽的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.
(1)求圓C的方程;
(2)過點M(1,0)的直線與圓C交于A,B兩點(A在x軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題14分)
如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分別為AD,PB的中點.
(Ⅰ)求證:PE⊥BC;
(Ⅱ)求證:平面PAB⊥平面PCD;
(Ⅲ)求證:EF∥平面PCD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com