科目: 來源: 題型:
【題目】省環(huán)保廳對、、三個城市同時進行了多天的空氣質量監(jiān)測,測得三個城市空氣質量為優(yōu)或良的數(shù)據共有180個,三城市各自空氣質量為優(yōu)或良的數(shù)據個數(shù)如下表所示:
城 | 城 | 城 | |
優(yōu)(個) | 28 | ||
良(個) | 32 | 30 |
已知在這180個數(shù)據中隨機抽取一個,恰好抽到記錄城市空氣質量為優(yōu)的數(shù)據的概率為0.2.
(1)現(xiàn)按城市用分層抽樣的方法,從上述180個數(shù)據中抽取30個進行后續(xù)分析,求在城中應抽取的數(shù)據的個數(shù);
(2)已知, ,求在城中空氣質量為優(yōu)的天數(shù)大于空氣質量為良的天數(shù)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統(tǒng)計表:
空調類 | 冰箱類 | 小家電類 | 其它類 | |
營業(yè)收入占比 | ||||
凈利潤占比 |
則下列判斷中不正確的是( )
A. 該公司2018年度冰箱類電器營銷虧損
B. 該公司2018年度小家電類電器營業(yè)收入和凈利潤相同
C. 該公司2018年度凈利潤主要由空調類電器銷售提供
D. 剔除冰箱類電器銷售數(shù)據后,該公司2018年度空調類電器銷售凈利潤占比將會降低
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的方程為,圓與軸相切于點,與軸正半軸相交于、兩點,且,如圖1.
(1)求圓的方程;
(2)如圖1,過點的直線與橢圓相交于、兩點,求證:射線平分;
(3)如圖2所示,點、是橢圓的兩個頂點,且第三象限的動點在橢圓上,若直線與軸交于點,直線與軸交于點,試問:四邊形的面積是否為定值?若是,請求出這個定值,若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,頂點在底面的射影恰好是菱形對角線的交點,且,,,,其中.
(1)當時,求證:;
(2)當與平面所成角的正弦值為時,求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的頂點在原點,對稱軸是軸,且過點.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知斜率為的直線交軸于點,且與曲線相切于點,點在曲線上,且直線軸, 關于點的對稱點為,判斷點是否共線,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著電子商務的興起,網上銷售為人們帶來了諸多便利.商務部預計,到2020年,網絡銷售占比將達到.網購的發(fā)展同時促進了快遞業(yè)的發(fā)展,現(xiàn)有甲、乙兩個快遞公司,每位打包工平均每天打包數(shù)量在范圍內.為擴展業(yè)務,現(xiàn)招聘打包工.兩公司提供的工資方案如下:甲公司打包工每天基礎工資64元,且每天每打包一件快遞另賺1元;乙公司打包工無基礎工資,如果每天打包量不超過240件,則每打包一件快遞可賺1.2元;如果當天打包量超過240件,則超出的部分每件賺1.8元.
下圖為隨機抽取的打包工每天需要打包數(shù)量的頻率分布直方圖,以打包量的頻率作為各打包量發(fā)生的概率.(同一組中的數(shù)據用該組區(qū)間的中間值作代表).
(1)(i)以每天打包量為自變量,寫出乙公司打包工的收入函數(shù);
(ii)若打包工小李是乙公司員工,求小李一天收入不低于324元的概率;
(2)某打包工在甲、乙兩個快遞公司中選擇一個公司工作,如果僅從日平均收入的角度考慮,請利用所學的統(tǒng)計學知識為該打包工作出選擇,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4—5:參數(shù)方程選講]
在直角坐標系xoy中,曲線的參數(shù)方程是(t是參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程是
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若兩曲線交點為A、B,求
查看答案和解析>>
科目: 來源: 題型:
【題目】橢圓的左、右焦點分別為,右頂點為A,上頂點為B,且滿足向量
(1)若A,求橢圓的標準方程;
(2)設P為橢圓上異于頂點的點,以線段PB為直徑的圓經過F1,問是否存在過F2的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com