科目: 來源: 題型:
【題目】下圖是古希臘數(shù)學(xué)家阿基米德用平衡法求球的體積所用的圖形.此圖由正方形、半徑為的圓及等腰直角三角形構(gòu)成,其中圓內(nèi)切于正方形,等腰三角形的直角頂點與的中點重合,斜邊在直線上.已知為的中點,現(xiàn)將該圖形繞直線旋轉(zhuǎn)一周,則陰影部分旋轉(zhuǎn)后形成的幾何體積為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知動點是的頂點,,,直線,的斜率之積為.
(1)求點的軌跡的方程;
(2)設(shè)四邊形的頂點都在曲線上,且,直線,分別過點,,求四邊形的面積為時,直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在乎面直角坐標(biāo)系中,直線:(為參數(shù)),以原點為極點,軸的非負(fù)半軸為極軸,且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程及曲線的直角坐標(biāo)方程;
(2)設(shè)點的直角坐標(biāo)為,直線與曲線交于兩點,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市一農(nóng)產(chǎn)品近六年的產(chǎn)量統(tǒng)計如下表:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量(千噸) | 5.1 | 5.3 | 5.6 | 5.5 | 6.0 | 6.1 |
觀察表中數(shù)據(jù)看出,可用線性回歸模型擬合與的關(guān)系.
(1)根據(jù)表中數(shù)據(jù),將以下表格空白部分的數(shù)據(jù)填寫完整,并建立關(guān)于的線性回歸方程;
總和 | 均值 | |||||||
1 | 2 | 3 | 4 | 5 | 6 | |||
5.1 | 5.3 | 5.6 | 5.5 | 6.0 | 6.1 | |||
1 | 4 | 9 | 16 | 25 | 36 | |||
5.1 | 10.6 | 16.8 | 22 | 30 | 36.6 | 121.1 |
(2)若在2025年之前該農(nóng)產(chǎn)品每千克的價格(單位:元)與年產(chǎn)量滿足的關(guān)系式為,且每年該農(nóng)產(chǎn)品都能全部銷售.預(yù)測在2013~2025年之間,某市該農(nóng)產(chǎn)品的銷售額在哪一年達(dá)到最大.
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為: ,.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點,焦點在軸上,離心率為,橢圓上的點到焦點距離的最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)斜率為的直線與橢圓交于不同的兩點,且線段的中垂線交軸于點,求點橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于無窮數(shù)列,若正整數(shù),使得當(dāng)時,有,則稱為“不減數(shù)列”.
(1)設(shè),均為正整數(shù),且,甲:為“不減數(shù)列”,乙:為“不減數(shù)列”.試判斷命題:“甲是乙的充分條件”的真假,并說明理由;
(2)已知函數(shù)與函數(shù)的圖象關(guān)于直線對稱,數(shù)列滿足,,如果為“不減數(shù)列”,試求的最小值;
(3)對于(2)中的,設(shè),且.是否存在實數(shù)使得為“不減數(shù)列”?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com