科目: 來源: 題型:
【題目】已知雙曲線C:,O為坐標(biāo)原點(diǎn),F為C的右焦點(diǎn),過F的直線與C的兩條漸近線的交點(diǎn)分別為M、N.若OMN為直角三角形,則|MN|=
A. B. 3 C. D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(k為常數(shù))是實(shí)數(shù)集R上的奇函數(shù),其中e為自然對(duì)數(shù)的底數(shù)。
(1)求k的值;
(2)討論關(guān)于x的方程如的根的個(gè)數(shù)。
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校為了解學(xué)生對(duì)食堂用餐的滿意度,從全校在食堂用餐的3000名學(xué)生中,隨機(jī)抽取100名學(xué)生對(duì)食堂用餐的滿意度進(jìn)行評(píng)分.根據(jù)學(xué)生對(duì)食堂用餐滿意度的評(píng)分,得到如圖所示的率分布直方圖,
(1)求頻率分布直方圖中的值
(2)規(guī)定:學(xué)生對(duì)食堂用餐滿意度的評(píng)分不低于80分為“滿意”,試估計(jì)該校在食堂用餐的3000名學(xué)生中“滿意”的人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】在四棱錐中,底面ABCD,,AB∥DC,,,點(diǎn)E為棱PC中點(diǎn)。
(1)證明:平面PAD;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點(diǎn),滿足,求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知四棱錐S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的一點(diǎn).
(1)求證:平面EBD⊥平面SAC;
(2)設(shè)SA=4,AB=2,求點(diǎn)A到平面SBD的距離;
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),試判斷零點(diǎn)的個(gè)數(shù);
(Ⅲ)當(dāng)時(shí),若對(duì),都有()成立,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國(guó)南宋著名數(shù)學(xué)家秦九韶(約1202—1261)被國(guó)外科學(xué)史家贊譽(yù)為“他那個(gè)民族,那個(gè)時(shí)代,并且確實(shí)也是所有時(shí)代最偉大的數(shù)學(xué)家之一”.他獨(dú)立推出了“三斜求積”公式,求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隅,開平方得積.”把以上這段文字寫成從三條邊長(zhǎng)求三角形面積的公式,就是.現(xiàn)如圖,已知平面四邊形中,,,,,,則平面四邊形的面積是_________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn)離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)經(jīng)過橢圓左焦點(diǎn)的直線(不經(jīng)過點(diǎn)且不與軸重合)與橢圓交于兩點(diǎn),與直線:交于點(diǎn),記直線的斜率分別為.則是否存在常數(shù),使得向量 共線?若存在求出的值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com