科目: 來源: 題型:
【題目】已知定義在上的可導(dǎo)函數(shù),對于任意實數(shù)都有成立,且當(dāng)時,都有成立,若,則實數(shù)的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點處的切線方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求的取值范圍;
(3)在(2)的條件下,設(shè)函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于函數(shù)f(x),若a,b,c∈R,f(a),f(b),f(c)都是某一三角形的三邊長,則稱f(x)為“可構(gòu)造三角形函數(shù)”.以下說法正確的是( )
A.f(x)=1(x∈R)不是“可構(gòu)造三角形函數(shù)”
B.“可構(gòu)造三角形函數(shù)”一定是單調(diào)函數(shù)
C.f(x)=是“可構(gòu)造三角形函數(shù)”
D.若定義在R上的函數(shù)f(x)的值域是(e為自然對數(shù)的底數(shù)),則f(x)一定是“可構(gòu)造三角形函數(shù)”
查看答案和解析>>
科目: 來源: 題型:
【題目】橢圓的右焦點為,且短軸長為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點為橢圓與軸正半軸的交點,是否存在直線,使得交橢圓于兩點,且恰是的垂心?若存在,求的方程;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】微信作為一款社交軟件已經(jīng)在支付、理財、交通、運動等各方面給人們的生活帶來各種各樣的便利.手機微信中的“微信運動”,不僅可以看自己每天的運動步數(shù),還可以看到朋友圈里好友的步數(shù).先生朋友圈里有大量好友使用了“微信運動”這項功能,他隨機選取了其中40名,記錄了他們某一天的走路步數(shù),統(tǒng)計數(shù)據(jù)如下表所示:
步數(shù) 性別 | ||||||
男 | 3 | 4 | 5 | 4 | 3 | 1 |
女 | 3 | 5 | 3 | 2 | 5 | 2 |
(1)以樣本估計總體,視樣本頻率為概率,在先生的微信朋友圈里的男性好友中任意選取3名,其中走路步數(shù)不低于6000步的有名,求的分布列和數(shù)學(xué)期望;
(2)如果某人一天的走路步數(shù)不低于8000步,此人將被“微信運動”評定為“運動達(dá)人”,否則為“運動懶人”.根據(jù)題意完成下面的2×2列聯(lián)表,并據(jù)此判斷能否有90%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?
運動達(dá)人 | 運動懶人 | 總計 | |
男 | |||
女 | |||
總計 |
附:,其中
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)().
(I)若,求曲線在點處的切線方程;
(II)若在上無極值點,求的值;
(III)當(dāng)時,討論函數(shù)的零點個數(shù),并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知奇函數(shù)f(x)=a(a為常數(shù)).
(1)求a的值;
(2)若函數(shù)g(x)=|(2x+1)f(x)|﹣k有2個零點,求實數(shù)k的取值范圍;
(3)若x∈[﹣2,﹣1]時,不等式f(x)恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在底面為正方形的四棱錐P-ABCD中,側(cè)棱PD⊥底面ABCD,PD=DC,點E是線段PC的中點.
(1)求異面直線AP與BE所成角的大;
(2)若點F在線段PB上,使得二面角F-DE-B的正弦值為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com