科目: 來源: 題型:
【題目】已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0(m∈R).
(1)判斷直線l與圓C的位置關(guān)系;
(2)設(shè)直線l與圓C交于A,B兩點,若直線l的傾斜角為120°,求弦AB的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,
(1)求函數(shù)f(x)過(﹣1,﹣2)的切線的方程
(2)過點P(1,t)存在兩條直線與曲線y=f(x)相切,求t的取值范圍
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣lnx+ax(a∈R).
(1)當(dāng)a=﹣e+1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a≥﹣1時,求證:f(x)>0.
查看答案和解析>>
科目: 來源: 題型:
【題目】東方商店欲購進某種食品(保質(zhì)期兩天),此商店每兩天購進該食品一次(購進時,該食品為剛生產(chǎn)的).根據(jù)市場調(diào)查,該食品每份進價元,售價元,如果兩天內(nèi)無法售出,則食品過期作廢,且兩天內(nèi)的銷售情況互不影響,為了了解市場的需求情況,現(xiàn)統(tǒng)計該產(chǎn)品在本地區(qū)天的銷售量如下表:
(視樣本頻率為概率)
(1)根據(jù)該產(chǎn)品天的銷售量統(tǒng)計表,記兩天中一共銷售該食品份數(shù)為,求的分布列與期望
(2)以兩天內(nèi)該產(chǎn)品所獲得的利潤期望為決策依據(jù),東方商店一次性購進或份,哪一種得到的利潤更大?
查看答案和解析>>
科目: 來源: 題型:
【題目】2021年我省將實施新高考,新高考“依據(jù)統(tǒng)一高考成績、高中學(xué)業(yè)水平考試成績,參考高中學(xué)生綜合素質(zhì)評價信息”進行人才選拔。我校2018級高一年級一個學(xué)習(xí)興趣小組進行社會實踐活動,決定對某商場銷售的商品A進行市場銷售量調(diào)研,通過對該商品一個階段的調(diào)研得知,發(fā)現(xiàn)該商品每日的銷售量(單位:百件)與銷售價格(元/件)近似滿足關(guān)系式,其中為常數(shù)已知銷售價格為3元/件時,每日可售出該商品10百件。
(1)求函數(shù)的解析式;
(2)若該商品A的成本為2元/件,根據(jù)調(diào)研結(jié)果請你試確定該商品銷售價格的值,使該商場每日銷售該商品所獲得的利潤(單位:百元)最大。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知三個內(nèi)角所對的邊分別是,若.
(1)求角;
(2)若的外接圓半徑為2,求周長的最大值.
【答案】(1) ;(2) .
【解析】試題分析:(1)由正弦定理將邊角關(guān)系化為邊的關(guān)系,再根據(jù)余弦定理求角,(2)先根據(jù)正弦定理求邊,用角表示周長,根據(jù)兩角和正弦公式以及配角公式化為基本三角函數(shù),最后根據(jù)正弦函數(shù)性質(zhì)求最大值.
試題解析:(1)由正弦定理得,
∴,∴,即
因為,則.
(2)由正弦定理
∴, , ,
∴周長
∵,∴
∴當(dāng)即時
∴當(dāng)時, 周長的最大值為.
【題型】解答題
【結(jié)束】
18
【題目】經(jīng)調(diào)查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國際衛(wèi)生組織對大量不同年齡的人群進行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
其中: , ,
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(的值精確到0.01)
(3)若規(guī)定,一個人的收縮壓為標(biāo)準(zhǔn)值的0.9~1.06倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)).以原點為極點,軸的非負半軸為極軸,取相同的單位長度建立極坐標(biāo)系.
(1)求圓的普通方程及其極坐標(biāo)方程;
(2)設(shè)直線的極坐標(biāo)方程為,射線與圓的交點為(異于極點),與直線的交點為,求線段的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左右焦點分別為,,點,是橢圓的左右頂點,點是橢圓上一動點,的周長為6,且直線,的斜率之積為.
(1)求橢圓的方程;
(2)若、為橢圓上位于軸同側(cè)的兩點,且,求四邊形面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】有兩種理財產(chǎn)品和,投資這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結(jié)果之間相互獨立):
產(chǎn)品:
投資結(jié)果 | 獲利 | 不賠不賺 | 虧損 |
概率 |
產(chǎn)品:
投資結(jié)果 | 獲利 | 不賠不賺 | 虧損 |
概率 |
注:,
(1)若甲、乙兩人分別選擇了產(chǎn)品投資,一年后他們中至少有一人獲利的概率大于,求實數(shù)的取值范圍;
(2)若丙要將20萬元人民幣投資其中一種產(chǎn)品,以一年后的投資收益的期望值為決策依據(jù),則丙選擇哪種產(chǎn)品投資較為理想.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com