科目: 來源: 題型:
【題目】如圖,在四邊形中,,,四邊形為矩形,且平面,.
(1)求證:平面;
(2)點在線段上運動,當點在什么位置時,平面與平面所成銳二面角最大,并求此時二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,曲線(α為參數(shù))經(jīng)過伸縮變換得到曲線C2.以坐標原點為極點,x軸正半軸為極軸建立極坐標系.
(1)求C2的普通方程;
(2)設曲線C3的極坐標方程為,且曲線C3與曲線C2相交于M,N兩點,點P(1,0),求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知平面內(nèi)一個動點M到定點F(3,0)的距離和它到定直線l:x=6的距離之比是常數(shù).
(1)求動點M的軌跡T的方程;
(2)若直線l:x+y-3=0與軌跡T交于A,B兩點,且線段AB的垂直平分線與T交于C,D兩點,試問A,B,C,D是否在同一個圓上?若是,求出該圓的方程;若不是,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】下表列出了10名5至8歲兒童的體重x(單位kg)(這是容易測得的)和體積y(單位dm3)(這是難以測得的),繪制散點圖發(fā)現(xiàn),可用線性回歸模型擬合y與x的關(guān)系:
體重x | 17.00 10.50 13.80 15.70 11.90 10.20 15.00 17.80 16.00 12.10 |
體積y | 16. 70 10.40 13.50 15.70 11.60 10.00 14.50 17.50 15.40 11.70 |
(1)求y關(guān)于x的線性回歸方程(系數(shù)精確到0.01);
(2)某5歲兒童的體重為13.00kg,估測此兒童的體積.
附注:參考數(shù)據(jù):,,,,
,,137×14=1918.00.
參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:,.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列中,,又數(shù)列滿足:.
(1)求證:數(shù)列是等比數(shù)列;
(2)若數(shù)列是單調(diào)遞增數(shù)列,求實數(shù)的取值范圍;
(3)若數(shù)列的各項皆為正數(shù),,設是數(shù)列的前項和,問:是否存在整數(shù),使得數(shù)列是單調(diào)遞減數(shù)列?若存在,求出整數(shù);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)當時,解不等式;
(2)已知是以2為周期的偶函數(shù),且當時,有.若,且,求函數(shù)的反函數(shù);
(3)若在上存在個不同的點,,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列各項均為正數(shù),為其前項的和,且成等差數(shù)列.
(1)寫出、、的值,并猜想數(shù)列的通項公式;
(2)證明(1)中的猜想;
(3)設,為數(shù)列的前項和.若對于任意,都有,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com