【題目】已知函數(shù)

(1)討論f(x)的單調(diào)性;

(2)恰有兩個(gè)極值點(diǎn),求實(shí)數(shù)m的取值范圍.

【答案】1)當(dāng)時(shí),為常數(shù)函數(shù),無(wú)單調(diào)性;當(dāng)時(shí),單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;當(dāng)時(shí),單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;(2.

【解析】

1)先求導(dǎo),對(duì)分類討論,即可求解;

2)函數(shù)有兩個(gè)極值點(diǎn),轉(zhuǎn)化為導(dǎo)函數(shù)在定義域內(nèi)有兩個(gè)不同的零點(diǎn),通過(guò)分離參數(shù),構(gòu)造新函數(shù),把兩個(gè)零點(diǎn)轉(zhuǎn)為新函數(shù)的圖像與直線有兩個(gè)交點(diǎn),利用求導(dǎo)作出新函數(shù)的圖像,即可求解.

1的定義域?yàn)?/span>

,

當(dāng)時(shí),為常數(shù)函數(shù),無(wú)單調(diào)性;

當(dāng)時(shí),令

當(dāng)時(shí),令

綜上所述,當(dāng)時(shí),為常數(shù)函數(shù),無(wú)單調(diào)性;

當(dāng)時(shí),單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;

當(dāng)時(shí),單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

2)由題意,的定義域?yàn)?/span>,

,若上有兩個(gè)極值點(diǎn),

上有兩個(gè)不相等的實(shí)數(shù)根,

①有兩個(gè)不相等的正的實(shí)數(shù)根,

當(dāng)時(shí),不是的實(shí)數(shù)根,

當(dāng)時(shí),由①式可得,

,,

單調(diào)遞增,又;

單調(diào)遞增,且

單調(diào)遞減,且

因?yàn)?/span>;

所以左側(cè),;

右側(cè),;

,;

所以函數(shù)的圖像如圖所示:

要使上有兩個(gè)不相等的實(shí)數(shù)根,

所以實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】石嘴山市第三中學(xué)高三年級(jí)統(tǒng)計(jì)學(xué)生的最近20次數(shù)學(xué)周測(cè)成績(jī)(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績(jī)?nèi)缜o葉圖所示:

1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績(jī)的中位數(shù),并將同學(xué)乙的成績(jī)的頻率分布直方圖填充完整;

(2)根據(jù)莖葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績(jī)的平均值及穩(wěn)定程度(不要求計(jì)算出具體值,給出結(jié)論即可);

(3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),記事件為“其中2個(gè)成績(jī)分別屬于不同的同學(xué)”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn),若直線與曲線交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是等差數(shù)列,公差為,前項(xiàng)和為.

1)設(shè),,求的最大值.

2)設(shè),,數(shù)列的前項(xiàng)和為,且對(duì)任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù).

1)當(dāng)時(shí),解不等式;

2)已知是以2為周期的偶函數(shù),且當(dāng)時(shí),有.,且,求函數(shù)的反函數(shù);

3)若在上存在個(gè)不同的點(diǎn),使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知是圓的直徑,在圓上且分別在的兩側(cè),其中,.現(xiàn)將其沿折起使得二面角為直二面角,則下列說(shuō)法不正確的是(

A.,,在同一個(gè)球面上

B.當(dāng)時(shí),三棱錐的體積為

C.是異面直線且不垂直

D.存在一個(gè)位置,使得平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,側(cè)棱、、、都和平面垂直,,,.

1)證明:平面平面

2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定義在上的函數(shù)滿足任意都有,時(shí),,,的大小關(guān)系是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為離心率為,為圓的圓心.

(1)求橢圓的方程;

(2)已知過(guò)橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn),過(guò)且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案