科目: 來(lái)源: 題型:
【題目】空氣質(zhì)量指數(shù)是反映空氣質(zhì)量狀況的指數(shù),指數(shù)值越小,表明空氣質(zhì)量越好,其對(duì)應(yīng)關(guān)系如表:
指數(shù)值 | ||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
如圖是某市10月1日—20日指數(shù)變化趨勢(shì):
下列敘述正確的是( )
A.該市10月的前半個(gè)月的空氣質(zhì)量越來(lái)越好
B.這20天中的中度污染及以上的天數(shù)占
C.這20天中指數(shù)值的中位數(shù)略高于100
D.總體來(lái)說(shuō),該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量差
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位已知直線l的參數(shù)方程為(為參數(shù),),拋物線C的普通方程為.
(1)求拋物線C的準(zhǔn)線的極坐標(biāo)方程;
(2)設(shè)直線l與拋物線C相交于A,B兩點(diǎn),求的最小值及此時(shí)的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖所示的幾何體中,正方形所在平面垂直于平面,四邊形為平行四邊形,G為上一點(diǎn),且平面,.
(1)求證:平面平面;
(2)當(dāng)三棱錐體積最大時(shí),求平面與平面所成二面角的正弦值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某城市為鼓勵(lì)人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經(jīng)過(guò)地鐵站的數(shù)量實(shí)施分段優(yōu)惠政策,不超過(guò)站的地鐵票價(jià)如下表:
乘坐站數(shù) | |||
票價(jià)(元) |
現(xiàn)有甲、乙兩位乘客同時(shí)從起點(diǎn)乘坐同一輛地鐵,已知他們乘坐地鐵都不超過(guò)站.甲、乙乘坐不超過(guò)站的概率分別為, ;甲、乙乘坐超過(guò)站的概率分別為, .
(1)求甲、乙兩人付費(fèi)相同的概率;
(2)設(shè)甲、乙兩人所付費(fèi)用之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】空氣質(zhì)量指數(shù)是反映空氣質(zhì)量狀況的指數(shù),指數(shù)值越小,表明空氣質(zhì)量越好,其對(duì)應(yīng)關(guān)系如表:
指數(shù)值 | ||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
如圖是某市10月1日—20日指數(shù)變化趨勢(shì):
下列敘述正確的是( )
A.該市10月的前半個(gè)月的空氣質(zhì)量越來(lái)越好
B.這20天中的中度污染及以上的天數(shù)占
C.這20天中指數(shù)值的中位數(shù)略高于100
D.總體來(lái)說(shuō),該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量差
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】對(duì)于雙曲線,定義為其伴隨曲線,記雙曲線的左、右頂點(diǎn)為、.
(1)當(dāng)時(shí),記雙曲線的半焦距為,其伴隨橢圓的半焦距為,若,求雙曲線的漸近線方程.
(2)若雙曲線的方程為,弦軸,記直線與直線的交點(diǎn)為,求其動(dòng)點(diǎn)的軌跡方程.
(3)過(guò)雙曲線的左焦點(diǎn),且斜率為的直線與雙曲線交于兩點(diǎn),求證:對(duì)任意的,在伴隨曲線上總存在點(diǎn),使得.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)的圖像過(guò)點(diǎn)和.
(1)求函數(shù)的解析式;
(2)若在上有解,求的最小值;
(3)記,,是否存在正數(shù),使得對(duì)一切均成立?若存在,求出的最大值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某企業(yè)年的純利潤(rùn)為萬(wàn)元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降,若不進(jìn)行技術(shù)改造,預(yù)測(cè)從今年(年)起每年比上一年純利潤(rùn)減少萬(wàn)元,今年初該企業(yè)一次性投入資金萬(wàn)元進(jìn)行技術(shù)改造,預(yù)計(jì)在未扣除技術(shù)改造資金的情況下,第年(今年為第一年)的利潤(rùn)為萬(wàn)元(為正整數(shù)).
(1)設(shè)從今年起的前年,若該企業(yè)不進(jìn)行技術(shù)改造的累計(jì)純利潤(rùn)為萬(wàn)元,進(jìn)行技術(shù)改造后的累計(jì)純利潤(rùn)為萬(wàn)元(須扣除技術(shù)改造資金),求,的表達(dá)式;
(2)以上述預(yù)測(cè),從今年起該企業(yè)至少經(jīng)過(guò)多少年后,進(jìn)行技術(shù)改造后的累計(jì)純利潤(rùn)超過(guò)不進(jìn)行技術(shù)改造的累計(jì)純利潤(rùn)?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】記矩陣中的第行第列上的元素為,現(xiàn)對(duì)矩陣中的元素按如下算法所示的步驟作變動(dòng)(直到不能變動(dòng)為止):若,則,,,若,則不變動(dòng),這樣得到矩陣B,再對(duì)矩陣B中的元素按如下算法所示的步驟作變動(dòng)(直到不能變動(dòng)為止):若,則,,;若,則不變動(dòng),這樣得到矩陣,則________;
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】對(duì)于函數(shù),若存在區(qū)間,使得,則稱(chēng)函數(shù)為“可等域函數(shù)”,區(qū)間為函數(shù)的一個(gè)“可等域區(qū)間”.給出下列4個(gè)函數(shù):
①;②; ③; ④.
其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”為( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com