科目: 來源: 題型:
【題目】如圖所示,、是兩個垃圾中轉(zhuǎn)站,在的正東方向千米處,的南面為居民生活區(qū).為了妥善處理生活垃圾,政府決定在的北面建一個垃圾發(fā)電廠.垃圾發(fā)電廠的選址擬滿足以下兩個要求(、、可看成三個點(diǎn)):①垃圾發(fā)電廠到兩個垃圾中轉(zhuǎn)站的距離與它們每天集中的生活垃圾量成反比,比例系數(shù)相同;②垃圾發(fā)電廠應(yīng)盡量遠(yuǎn)離居民區(qū)(這里參考的指標(biāo)是點(diǎn)到直線的距離要盡可能大).現(xiàn)估測得、兩個中轉(zhuǎn)站每天集中的生活垃圾量分別約為噸和噸.設(shè).
(1)求(用的表達(dá)式表示);
(2)垃圾發(fā)電廠該如何選址才能同時滿足上述要求?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)為,且過坐標(biāo)原點(diǎn)O,數(shù)列的前n項(xiàng)和為,點(diǎn)()在二次函數(shù)的圖象上.
(1)求數(shù)列的表達(dá)式;
(2)設(shè)(),數(shù)列的前n項(xiàng)和為,若對恒成立,求實(shí)數(shù)m的取值范圍;
(3)在數(shù)列中是否存在這樣的一些項(xiàng),,,,…,…(),這些項(xiàng)能夠依次構(gòu)成以為首項(xiàng),q(,)為公比的等比數(shù)列?若存在,寫出關(guān)于k的表達(dá)式;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù) 是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷函數(shù)在上的單調(diào)性,并給出證明;
(3)當(dāng)時,函數(shù)的值域是,求實(shí)數(shù)與的值
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動點(diǎn)到定點(diǎn)的距離與它到直線的距離相等.
(1)求動點(diǎn)的軌跡的方程;
(2)設(shè)動直線與曲線相切于點(diǎn),與直線相交于點(diǎn).
證明:以為直徑的圓恒過軸上某定點(diǎn).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱錐中,底面,,.D,E分別為,的中點(diǎn),過的平面與,相交于點(diǎn)M,N(M與P,B不重合,N與P,C不重合).
(1)求證:;
(2)求直線與平面所成角的大小;
(3)若直線與直線所成角的余弦值時,求的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某地區(qū)有800名學(xué)員參加交通法規(guī)考試,考試成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:,,,,,規(guī)定90分及以上為合格:
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖估計(jì)該地區(qū)學(xué)員交通法規(guī)考試合格的概率;
(3)若三個人參加交通法規(guī)考試,估計(jì)這三個人至少有兩人合格的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在長方體中,AD=2,AB=AE=1,M為矩形AEHD內(nèi)的一點(diǎn),如果∠MGF=∠MGH,MG和平面EFG所成角的正切值為那么點(diǎn)M到平面EFGH的距離是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于無窮數(shù)列,,若-…,則稱是的“收縮數(shù)列”.其中,,分別表示中的最大數(shù)和最小數(shù).已知為無窮數(shù)列,其前項(xiàng)和為,數(shù)列是的“收縮數(shù)列”.
(1)若,求的前項(xiàng)和;
(2)證明:的“收縮數(shù)列”仍是;
(3)若,求所有滿足該條件的.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,設(shè),.
(Ⅰ)試確定t的取值范圍,使得函數(shù)在上為單調(diào)函數(shù);
(Ⅱ)求證:;
(Ⅲ)求證:對于任意的,總存在,滿足,又若方程在上有唯一解,請確定t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在處取得極值,對, 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com