相關(guān)習(xí)題
 0  266049  266057  266063  266067  266073  266075  266079  266085  266087  266093  266099  266103  266105  266109  266115  266117  266123  266127  266129  266133  266135  266139  266141  266143  266144  266145  266147  266148  266149  266151  266153  266157  266159  266163  266165  266169  266175  266177  266183  266187  266189  266193  266199  266205  266207  266213  266217  266219  266225  266229  266235  266243  266669 

科目: 來源: 題型:

【題目】在直角坐標(biāo)系中,已知拋物線上一點到焦點的距離為6,點為其準(zhǔn)線上的任意一點,過點作拋物線的兩條切線,切點分別為.

1)求拋物線的方程;

2)當(dāng)點軸上時,證明:為等腰直角三角形.

3)證明:為直角三角形.

查看答案和解析>>

科目: 來源: 題型:

【題目】在四棱錐中,平面,是正三角形,.

1)求平面與平面所成的銳二面角的大;

2)點為線段上的一動點,設(shè)異面直線與直線所成角的大小為,當(dāng)時,試確定點的位置.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列,若對任意的,,存在正數(shù)使得,則稱數(shù)列具有守恒性質(zhì),其中最小的稱為數(shù)列的守恒數(shù),記為.

1)若數(shù)列是等差數(shù)列且公差為,前項和記為.

①證明:數(shù)列具有守恒性質(zhì),并求出其守恒數(shù).

②數(shù)列是否具有守恒性質(zhì)?并說明理由.

2)若首項為1且公比不為1的正項等比數(shù)列具有守恒性質(zhì),且,求公比值的集合.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),.

1)若曲線處的切線與曲線相切,求的值;

2)當(dāng)時,函數(shù)的圖象恒在函數(shù)的圖象的下方,求的取值范圍;

3)若函數(shù)恰有2個不相等的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,某同學(xué)在素質(zhì)教育基地通過自己設(shè)計、選料、制作,打磨出了一個作品,作品由三根木棒,組成,三根木棒有相同的端點(粗細(xì)忽略不計),且四點在同一平面內(nèi),,木棒可繞點O任意旋轉(zhuǎn),設(shè)BC的中點為D.

1)當(dāng)時,求OD的長;

2)當(dāng)木棒OC繞點O任意旋轉(zhuǎn)時,求AD的長的范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系中,已知橢圓,若圓的一條切線與橢圓有兩個交點,且.

1)求圓的方程;

2)已知橢圓的上頂點為,點在圓上,直線與橢圓相交于另一點,且,求直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學(xué)計劃在一年級開設(shè)冰球課程,為了解學(xué)生對冰球運動的興趣,隨機(jī)從該校一年級學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.

(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對冰球是否有興趣與性別有關(guān)”?

有興趣

沒興趣

合計

55

合計

(2)已知在被調(diào)查的女生中有5名數(shù)學(xué)系的學(xué)生,其中3名對冰球有興趣,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至少有2人對冰球有興趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)與函數(shù)處有相同的切線,求實數(shù)的值;

(2)當(dāng)時, ,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,一張坐標(biāo)紙上一已作出圓及點,折疊此紙片,使與圓周上某點重合每次折疊都會留下折痕,設(shè)折痕與直線的交點為,令點的軌跡為.

(1)求軌跡的方程;

(2)若直線與軌跡交于兩個不同的點,且直線與以為直徑的圓相切,,的面積的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,平面平面ABCD,底面ABCD是直角梯形,,.

1)在線段PA上找一點E,使得平面PCD,并證明;

2)在(1)的條件下,若,求點E到平面PCD的距離.

查看答案和解析>>

同步練習(xí)冊答案