科目: 來源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別是,,,是其左右頂點(diǎn),點(diǎn)是橢圓上任一點(diǎn),且的周長為6,若面積的最大值為.
(1)求橢圓的方程;
(2)若過點(diǎn)且斜率不為0的直線交橢圓于,兩個(gè)不同點(diǎn),證明:直線與的交點(diǎn)在一條定直線上.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了整頓道路交通秩序,某地考慮對行人闖紅燈進(jìn)行處罰.為了更好地了解市民的態(tài)度,在普通人中隨機(jī)抽取200人進(jìn)行調(diào)查,當(dāng)不處罰時(shí),有80人會(huì)闖紅燈,處罰時(shí),得到如下數(shù)據(jù):
處罰金額(單位:元) | 5 | 10 | 15 | 20 |
會(huì)闖紅燈的人數(shù) | 50 | 40 | 20 | 0 |
若用表中數(shù)據(jù)所得頻率代替概率.
(1)當(dāng)處罰金定為10元時(shí),行人闖紅燈的概率會(huì)比不進(jìn)行處罰降低多少?
(2)將選取的200人中會(huì)闖紅燈的市民分為兩類:類市民在罰金不超過10元時(shí)就會(huì)改正行為;類是其它市民.現(xiàn)對類與類市民按分層抽樣的方法抽取4人依次進(jìn)行深度問卷,則前兩位均為類市民的概率是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】
已知函數(shù)f(x)=-bx+lnx(a,b∈R).
(Ⅰ)若a=b=1,求f(x)點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)設(shè)a<0,求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)a<0,且對任意的x>0,f(x)≤f(2),試比較ln(-a)與-2b的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ex-ax-1(e為自然對數(shù)的底數(shù)),a>0.
(1)若函數(shù)f(x)恰有一個(gè)零點(diǎn),證明:aa=ea-1;
(2)若f(x)≥0對任意x∈R恒成立,求實(shí)數(shù)a的取值集合.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知P是圓F1:(x+1)2+y2=16上任意一點(diǎn),F2(1,0),線段PF2的垂直平分線與半徑PF1交于點(diǎn)Q,當(dāng)點(diǎn)P在圓F1上運(yùn)動(dòng)時(shí),記點(diǎn)Q的軌跡為曲線C.
(1)求曲線C的方程;
(2)記曲線C與x軸交于A,B兩點(diǎn),M是直線x=1上任意一點(diǎn),直線MA,MB與曲線C的另一個(gè)交點(diǎn)分別為D,E,求證:直線DE過定點(diǎn)H(4,0).
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)在給出三個(gè)條件:①a=2;②B;③cb.試從中選出兩個(gè)條件,補(bǔ)充在下面的問題中,使其能夠確定△ABC,并以此為依據(jù),求△ABC的面積.
在△ABC中,a、b、c分別是角A、B、C的對邊,且滿足,求△ABC的面積(選出一種可行的方案解答,若選出多個(gè)方案分別解答,則按第一個(gè)解答記分)
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(e+x)=f(e﹣x),且f(0)=0,當(dāng)x∈(0,e]時(shí),f(x)=lnx已知方程在區(qū)間[﹣e,3e]上所有的實(shí)數(shù)根之和為3ea,將函數(shù)的圖象向右平移a個(gè)單位長度,得到函數(shù)h(x)的圖象,,則h(7)=_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】雙曲線C:的左、右焦點(diǎn)為F1,F2,直線yb與C的右支相交于點(diǎn)P,若|PF1|=2|PF2|,則雙曲線C的離心率為_____;若該雙曲線的焦點(diǎn)到其漸近線的距離是,則雙曲線的方程為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)求在點(diǎn)處的切線方程;
(2)若不等式恒成立,求k的取值范圍;
(3)求證:當(dāng)時(shí),不等式成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com