相關(guān)習題
 0  266183  266191  266197  266201  266207  266209  266213  266219  266221  266227  266233  266237  266239  266243  266249  266251  266257  266261  266263  266267  266269  266273  266275  266277  266278  266279  266281  266282  266283  266285  266287  266291  266293  266297  266299  266303  266309  266311  266317  266321  266323  266327  266333  266339  266341  266347  266351  266353  266359  266363  266369  266377  266669 

科目: 來源: 題型:

【題目】為了研究每周累計戶外暴露時間是否足夠(單位:小時)與近視發(fā)病率的關(guān)系,對某中學一年級名學生進行不記名問卷調(diào)查,得到如下數(shù)據(jù):

1)用樣本估計總體思想估計該中學一年級學生的近視率;

2)能否認為在犯錯誤的概率不超過的前提下認為不足夠的戶外暴露時間與近視有關(guān)系?

附:

查看答案和解析>>

科目: 來源: 題型:

【題目】交通擁堵指數(shù)是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通擁堵指數(shù)為,其范圍為,分別有五個級別:暢通;基本暢通;輕度擁堵;中度擁堵;嚴重擁堵.晚高峰時段(),從某市交通指揮中心選取了市區(qū)20個交通路段,依據(jù)其交通擁堵指數(shù)數(shù)據(jù)繪制的直方圖如圖所示.

(Ⅰ)用分層抽樣的方法從交通指數(shù)在,,的路段中共抽取個路段,求依次抽取的三個級別路段的個數(shù);

(Ⅱ)從(Ⅰ)中抽出的個路段中任取個,求至少有個路段為輕度擁堵的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1所示,在等腰梯形ABCD中,,垂足為E,沿EC折起到的位置,如圖2所示,使平面平面ABCE.

1)連結(jié)BE,證明:平面

2)在棱上是否存在點G,使得平面,若存在,直接指出點G的位置不必說明理由,并求出此時三棱錐的體積;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知拋物線的焦點是,準線是,拋物線上任意一點軸的距離比到準線的距離少2.

1)寫出焦點的坐標和準線的方程;

2)已知點,若過點的直線交拋物線于不同的兩點(均與不重合),直線分別交于點,求證:.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)),.

1)當時,求函數(shù)的極小值;

2)若當時,關(guān)于的方程有且只有一個實數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數(shù)學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為),M為該曲線上的任意一點.

1)當時,求M點的極坐標;

2)將射線OM繞原點O逆時針旋轉(zhuǎn)與該曲線相交于點N,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知O為坐標原點,拋物線Cy2=8x上一點A到焦點F的距離為6,若點P為拋物線C準線上的動點,則|OP|+|AP|的最小值為( 。

A. 4B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),.

(1)當時,求函數(shù)在點處的切線方程;

(2)是否存在實數(shù)a,使函數(shù)在區(qū)間上的最小值為,若存在,求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,

1)證明:平面;

2)求二面角的大。

查看答案和解析>>

科目: 來源: 題型:

【題目】某大型歌手選秀活動,過程分為初賽、復(fù)賽和決賽.經(jīng)初賽進入復(fù)賽的40名選手被平均分成甲、乙兩個班,由組委會聘請兩位導(dǎo)師各負責一個班進行聲樂培訓.下圖是根據(jù)這40名選手參加復(fù)賽時獲得的100名大眾評審的支持票數(shù)制成的莖葉圖.賽制規(guī)定:參加復(fù)賽的40名選手中,獲得的支持票數(shù)不低于85票的可進入決賽,其中票數(shù)不低于95票的選手在決賽時擁有優(yōu)先挑戰(zhàn)權(quán)”.

1)從進入決賽的選手中隨機抽出2名,X表示其中擁有優(yōu)先挑戰(zhàn)權(quán)的人數(shù),求X的分布列和數(shù)學期望;

2)請?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.025的前提下認為進入決賽與選擇的導(dǎo)師有關(guān)?

甲班

乙班

合計

進入決賽

未進入決賽

合計

下面的臨界值表僅供參考:

P

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

同步練習冊答案