【題目】如圖,已知拋物線的焦點(diǎn)是,準(zhǔn)線是,拋物線上任意一點(diǎn)到軸的距離比到準(zhǔn)線的距離少2.
(1)寫出焦點(diǎn)的坐標(biāo)和準(zhǔn)線的方程;
(2)已知點(diǎn),若過點(diǎn)的直線交拋物線于不同的兩點(diǎn)(均與不重合),直線分別交于點(diǎn),求證:.
【答案】(1)焦點(diǎn)為,準(zhǔn)線的方程為;(2)詳見解析.
【解析】
(1)由已知得拋物線的準(zhǔn)線方程為,從而得拋物線方程,焦點(diǎn)坐標(biāo);
(2)設(shè)直線的方程為:,令,直線方程代入拋物線方程,整理后由韋達(dá)定理得,由直線方程求出的坐標(biāo),計(jì)算即可證得結(jié)論.
解:(1)由題意知,任意一點(diǎn)到焦點(diǎn)的距離等于到直線的距離,由拋物線的定義得拋物線標(biāo)準(zhǔn)方程為,
所以拋物線的焦點(diǎn)為,準(zhǔn)線的方程為;
(2)設(shè)直線的方程為:,令,
聯(lián)立直線的方程與拋物線的方程,消去得,
由根與系數(shù)的關(guān)系得:
直線方程為:,
當(dāng)時(shí),,∴,同理得:,
∴,
∴
,
∴,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論在上的零點(diǎn)個(gè)數(shù);
(2)當(dāng)時(shí),若存在,使,求實(shí)數(shù)的取值范圍.(為自然對(duì)數(shù)的底數(shù),其值為2.71828……)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點(diǎn),且與圓相切.
(1)求的值;
(2)動(dòng)點(diǎn)在拋物線的準(zhǔn)線上,動(dòng)點(diǎn)在上,若在點(diǎn)處的切線交軸于點(diǎn),設(shè).求證點(diǎn)在定直線上,并求該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn).求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考方案規(guī)定,普通高中學(xué)業(yè)水平考試分為合格性考試(合格考)和選擇性考試(選擇考).其中“選擇考”成績(jī)將計(jì)入高考總成績(jī),即“選擇考”成績(jī)根據(jù)學(xué)生考試時(shí)的原始卷面分?jǐn)?shù),由高到低進(jìn)行排序,評(píng)定為、、、、五個(gè)等級(jí).某試點(diǎn)高中2018年參加“選擇考”總?cè)藬?shù)是2016年參加“選擇考”總?cè)藬?shù)的2倍,為了更好地分析該校學(xué)生“選擇考”的水平情況,統(tǒng)計(jì)了該校2016年和2018年“選擇考”成績(jī)等級(jí)結(jié)果,得到如下圖表:
針對(duì)該校“選擇考”情況,2018年與2016年比較,下列說法正確的是( )
A. 獲得A等級(jí)的人數(shù)減少了B. 獲得B等級(jí)的人數(shù)增加了1.5倍
C. 獲得D等級(jí)的人數(shù)減少了一半D. 獲得E等級(jí)的人數(shù)相同
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線的斜率為1的切線方程;
(Ⅱ)當(dāng)時(shí),求證:;
(Ⅲ)設(shè),記在區(qū)間上的最大值為M(a),當(dāng)M(a)最小時(shí),求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中有一分鹿問題:“今有大夫、不更、簪裊、上造、公士,凡五人,共獵得五鹿.欲以爵次分之,問各得幾何.”在這個(gè)問題中,大夫、不更、簪裊、上造、公士是古代五個(gè)不同爵次的官員,現(xiàn)皇帝將大夫、不更、簪梟、上造、公士這5人分成兩組(一組2人,一組3人),派去兩地執(zhí)行公務(wù),則大夫、不更恰好在同一組的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,的焦點(diǎn)為,過點(diǎn)的直線的斜率為,與拋物線交于,兩點(diǎn),拋物線在點(diǎn),處的切線分別為,,兩條切線的交點(diǎn)為.
(1)證明:;
(2)若的外接圓與拋物線有四個(gè)不同的交點(diǎn),求直線的斜率的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com