科目: 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若在內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn)分別為,,證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線上,直線l過點(diǎn)且與垂直,垂足為P.
(1)當(dāng)時(shí),求及l的極坐標(biāo)方程;
(2)當(dāng)M在C上運(yùn)動(dòng)且P在線段OM上時(shí),求P點(diǎn)軌跡的極坐標(biāo)方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)其中為實(shí)數(shù).設(shè),為該函數(shù)圖象上的兩個(gè)不同的點(diǎn).
(1)指出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象在點(diǎn),處的切線互相平行,求的最小值;
(3)若函數(shù)的圖象在點(diǎn),處的切線重合,求的取值范圍.(只要求寫出答案).
查看答案和解析>>
科目: 來源: 題型:
【題目】某品牌經(jīng)銷商在一廣場隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計(jì) | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計(jì) | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);
(3)從(2)中抽取的5位女性中,再隨機(jī)抽取3人贈(zèng)送禮品,試求抽取3人中恰有2人位“微信控”的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(e+x)=f(e﹣x),且f(0)=0,當(dāng)x∈(0,e]時(shí),f(x)=lnx已知方程在區(qū)間[﹣e,3e]上所有的實(shí)數(shù)根之和為3ea,將函數(shù)的圖象向右平移a個(gè)單位長度,得到函數(shù)h(x)的圖象,,則h(7)=_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)在處取得極小值.
(1)求實(shí)數(shù)的值;
(2)若函數(shù)存在極大值與極小值,且函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.(參考數(shù)據(jù):,)
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)對某市工薪階層關(guān)于“樓市限購令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如表:
月收入(單位百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表并問是否有99%的把握認(rèn)為“月收入以5500為分界點(diǎn)”對“樓市限購令”的態(tài)度有差異;
月收入低于55百元的人數(shù) | 月收入不低于55百元的人數(shù) | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
(Ⅱ)若采用分層抽樣在月收入在[15,25),[25,35)的被調(diào)查人中共隨機(jī)抽取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求收到“紅包”獎(jiǎng)勵(lì)的3人中至少有1人收入在[15,25)的概率.
參考公式:K2,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓:的焦距為2,且過點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓的上頂點(diǎn)為,右焦點(diǎn)為,直線與橢圓交于,兩點(diǎn),問是否存在直線,使得為的垂心,若存在,求出直線的方程:若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將直線l沿x軸正方向平移3個(gè)單位長度,沿y軸正方向平移5個(gè)單位長度,得到直線l1.再將直線l1沿x軸正方向平移1個(gè)單位長度,沿y軸負(fù)方向平移2個(gè)單位長度,又與直線l重合.若直線l與直線l1關(guān)于點(diǎn)(2,3)對稱,則直線l的方程是________________.
查看答案和解析>>
科目: 來源: 題型:
【題目】2018年遼寧省正式實(shí)施高考改革.新高考模式下,學(xué)生將根據(jù)自己的興趣、愛好、學(xué)科特長和高校提供的“選考科目要求”進(jìn)行選課.這樣學(xué)生既能尊重自己愛好、特長做好生涯規(guī)劃,又能發(fā)揮學(xué)科優(yōu)勢,進(jìn)而在高考中獲得更好的成績和實(shí)現(xiàn)自己的理想.考改實(shí)施后,學(xué)生將在高二年級將面臨著的選課模式,其中“3”是指語、數(shù)、外三科必學(xué)內(nèi)容,“1”是指在物理和歷史中選擇一科學(xué)習(xí),“2”是指在化學(xué)、生物、地理、政治四科中任選兩科學(xué)習(xí).某校為了更好的了解學(xué)生對“1”的選課情況,學(xué)校抽取了部分學(xué)生對選課意愿進(jìn)行調(diào)查,依據(jù)調(diào)查結(jié)果制作出如下兩個(gè)等高堆積條形圖:根據(jù)這兩幅圖中的信息,下列哪個(gè)統(tǒng)計(jì)結(jié)論是不正確的( )
A.樣本中的女生數(shù)量多于男生數(shù)量
B.樣本中有學(xué)物理意愿的學(xué)生數(shù)量多于有學(xué)歷史意愿的學(xué)生數(shù)量
C.樣本中的男生偏愛物理
D.樣本中的女生偏愛歷史
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com