【答案】
分析:(1)由于小物塊與長(zhǎng)木板存在摩擦力,系統(tǒng)的機(jī)械能不斷減少,所以小物塊第一次與擋板碰撞后兩者相對(duì)速度最大,第1次小物塊若不能從長(zhǎng)木板上掉下,往后每次相對(duì)滑動(dòng)的距離會(huì)越來(lái)越小,更不可能掉下.第一次碰撞后,物塊恰好不從木板上掉下時(shí),兩者速度相同,而且物塊恰好滑到木板的另一端,根據(jù)動(dòng)量守恒定律求出第一次碰撞后兩者的共同速度,由能量守恒定律求出長(zhǎng)木板的長(zhǎng)度L最小值.
(2)根據(jù)動(dòng)量守恒定律求出1、2、3次碰撞后物塊與木板的共同速度,尋找規(guī)律,再求解整個(gè)系統(tǒng)在第n次碰撞前損失的所有機(jī)械能.
解答:解:(1)長(zhǎng)木板與右邊擋板第一次碰撞后,物塊在長(zhǎng)木板上以速度v
作相對(duì)運(yùn)動(dòng),因左右擋板之間的距離足夠長(zhǎng),當(dāng)木塊與長(zhǎng)木板以共同速度v
1向左運(yùn)動(dòng)時(shí),物塊在長(zhǎng)木板上移動(dòng)的距離最遠(yuǎn)(設(shè)為L(zhǎng)),此時(shí)物塊在長(zhǎng)木板上不掉下,則在以后的運(yùn)動(dòng)中物塊也不會(huì)從長(zhǎng)木板上掉下.因?yàn)槊看闻鲎埠笪飰K相對(duì)長(zhǎng)木板運(yùn)動(dòng)的加速度相同,物塊相對(duì)長(zhǎng)木板運(yùn)動(dòng)的末速度也相同且為0,而第一次碰撞后物塊相對(duì)長(zhǎng)木板運(yùn)動(dòng)的初速度最大,所以第一次碰撞后物塊相對(duì)長(zhǎng)木板的位移也最大.
由動(dòng)量守恒和能量守恒可得:
(M-m)v
=(M+m)v
1①(M+m)v
2-
(M+m)v
12=μmgL②
由①②兩式可得:L=2Mv
2即要使物塊不從長(zhǎng)木板上掉下,長(zhǎng)木板的最短長(zhǎng)度應(yīng)為:L=2Mv
2(2)長(zhǎng)木板與擋板第二次碰撞前系統(tǒng)所損失的機(jī)械能為△E
1,則由能量守恒可得:
△E
1=
(M+m)v
2-
(M+m)v
12③
由①③式可得:△E
1=2Mmv
2④
長(zhǎng)木板與擋板第二次碰撞后到物塊與長(zhǎng)木板第二次以共同速度v
2向右運(yùn)動(dòng),直到長(zhǎng)木板與擋板第3次碰撞前,系統(tǒng)所損失的機(jī)械能為△E
2,由動(dòng)量守恒和能量守恒可得:
(M-m)v
1=(M+m)v
2⑤△E
2=
(M+m)v
12-
(M+m)v
22⑥
由⑤⑥二式可得:△E
2=2Mmv
12=
⑦
故長(zhǎng)木板與擋板第3次碰撞前整個(gè)系統(tǒng)損失的機(jī)械能為:
由⑥⑦二式可得:△E=△E
1+△E
2=
⑧
將數(shù)據(jù)代入式可得:△E=148.1J⑨
由④⑦二式可得:長(zhǎng)木板與板第(n-1)次碰撞后到長(zhǎng)木板與擋板第n次碰撞前,系統(tǒng)所損失的機(jī)械能為△E
(n-1),由等比數(shù)列公式可得:
則:△E
(n-1)=
⑩
所以長(zhǎng)木板與擋板第n次碰撞前整個(gè)系統(tǒng)損失的機(jī)械能為:
△E
總=
=
答:(1)若m<M,要使物塊不從長(zhǎng)木板上落下,長(zhǎng)木板的最短長(zhǎng)度是2Mv
2(2)若物塊不會(huì)從長(zhǎng)木板上掉下,且M=2kg,m=1kg,v
=10m/s,長(zhǎng)木板與擋板第3次碰撞前整個(gè)系統(tǒng)損失的機(jī)械能大小是148.1J
第n次碰撞前整個(gè)系統(tǒng)損失的機(jī)械能表達(dá)式是
.
點(diǎn)評(píng):本題采用數(shù)學(xué)歸納法研究多次碰撞過(guò)程遵守的規(guī)律,考查分析和處理復(fù)雜運(yùn)動(dòng)過(guò)程的能力.