分析 (1)電荷在勻強磁場中做勻速圓周運動,畫出軌跡,找出運動粒子的圓心,結(jié)合幾何關(guān)系即可求出粒子的半徑;
(2)同理求出b粒子的半徑,結(jié)合半徑公式即可得出它們的速率關(guān)系;
(3)畫出軌跡,找出運動粒子的圓心,結(jié)合幾何關(guān)系即可求出粒子的半徑由半徑公式即可求出磁感應(yīng)強度.
解答 解:(1)找出A粒子的圓心如圖,由圖中幾何關(guān)系得:
$\frac{R}{{r}_{1}}=tan\frac{θ}{2}$
所以:${r}_{1}=\frac{R}{tan\frac{θ}{2}}$
(2)由于粒子運動的時間與偏轉(zhuǎn)的角度的關(guān)系是:$\frac{t}{T}=\frac{α}{2π}$,由于粒子B在磁場中的運動時間是粒子A的2倍,所以B粒子的偏轉(zhuǎn)角是2θ;
同理求出b粒子的半徑:${r}_{2}=\frac{R}{tanθ}$,
粒子在磁場中做勻速圓周運動,則$qvB=\frac{m{v}^{2}}{r}$,得:$r=\frac{mv}{qB}$①
所以:$\frac{{v}_{A}}{{v}_{B}}=\frac{{r}_{1}}{{r}_{2}}=\frac{tanθ}{tan\frac{θ}{2}}$
(3)粒子A改從磁場邊界上距MN為0.6R的P點沿平行于MN方向以速率v入射,軌跡如右圖:
PO″與MO交與E點,SF⊥MO交與F點;由圖中幾何關(guān)系可知,r=PO″=SO″;$sin∠POM=\frac{0.6R}{R}=0.6$
所以:∠POM=37°,∠SOM=90°-37°=53°
所以:EP=0.6R,EO=R•cos37°=0.8R;SF=R•sin∠SOM=0.8R,F(xiàn)O=R•cos∠SOM=0.6R,②
所以:O″K=EF=EO-FO=0.2R ③
設(shè):O″E=KF=x,則x=O″P-PE=(r-0.6R) ④
由勾股定理得:r2=SK2+O″K2
即:r2=(0.8R-x)2+(0.2R)2 ⑤
聯(lián)立②③④⑤得:$r=\frac{5}{7}R$⑥
聯(lián)立①⑥得:$B=\frac{7mv}{5qR}$.
答:(1)A粒子的軌跡半徑是$\frac{R}{tan\frac{θ}{2}}$.
(2)A、B兩粒子的速率之比是$\frac{tanθ}{tan\frac{θ}{2}}$.
(3)若讓粒子A改從磁場邊界上距MN為0.6R的P點沿平行于MN方向以速率v入射,結(jié)果粒子A以90°的偏轉(zhuǎn)角射出磁場,磁感應(yīng)強度是$\frac{7mv}{5qR}$
點評 帶電粒子在勻強磁場中勻速圓周運動問題,關(guān)鍵是畫出粒子圓周的軌跡,往往用數(shù)學(xué)知識求半徑.
科目:高中物理 來源: 題型:選擇題
A. | 該波的波速為20m/s,且沿x軸負(fù)方向傳播 | |
B. | 從該時刻起經(jīng)過0.15s,波沿x軸的正方向傳播了3 m | |
C. | 若一人從x正方向靠近O點運動,他接受到波的頻率可能為4Hz | |
D. | 從該時刻起經(jīng)過0.3s時,質(zhì)點Q的運動方向沿y軸正方向 |
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | 環(huán)境溫度升高 | |
B. | 大氣壓強增大 | |
C. | U型玻璃管自由下落 | |
D. | 把U型玻璃管轉(zhuǎn)置開口豎直向上靜置 |
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com