精英家教網 > 高中物理 > 題目詳情
7.如圖(1)所示,兩足夠長平行光滑的金屬導軌MN、PQ相距為0.8m,導軌平面與水平面夾角為α,導軌電阻不計.有一個勻強磁場垂直軌平面斜向上,長為1m的金屬棒ab垂直于MN、PQ放置在導軌上,且始終與導軌電接觸良好,金屬棒的質量為0.1kg、與導軌接觸端間電阻為1Ω.兩金屬導軌的上端連接右端電路,電路中R2為一電阻箱.已知燈泡的電阻RL=4Ω,定值電阻R1=2Ω,調節(jié)電阻箱使R2=12Ω,重力加速度g=10m/s2.將電鍵S打開,金屬棒由靜止釋放,1s后閉合電鍵,如圖(2)所示為金屬棒的速度隨時間變化的圖象.求:

(1)斜面傾角α及磁感應強度B的大。
(2)若金屬棒下滑距離為60m時速度恰達到最大,求金屬棒由靜止開始下滑100m的過程中,整個電路產生的電熱;
(3)改變電阻箱R2的值,當R2為何值時,金屬棒勻速下滑時R2消耗的功率最大;消耗的最大功率為多少?

分析 (1)電鍵S打開,ab棒做勻加速直線運動,由速度圖象求出加速度,由牛頓第二定律求解斜面的傾角α.開關閉合后,導體棒最終做勻速直線運動,由F=BIL,I=$\frac{{BL{v_m}}}{R_總}$得到安培力表達式,由重力的分力mgsinα=F,求出磁感應強度B.
(2)金屬棒由靜止開始下滑100m的過程中,重力勢能減小mgSsinα,轉化為金屬棒的動能和整個電路產生的電熱,由能量守恒求解電熱.
(3)改變電阻箱R2的值后,由金屬棒ab勻速運動,得到干路中電流表達式,推導出R2消耗的功率與R2的關系式,根據數(shù)學知識求解R2消耗的最大功率.

解答 解:(1)電鍵S打開,從圖上得:$a=gsinα=\frac{△v}{△t}=5m/{s^2}$,
故sinα=$\frac{1}{2}$,解得α=30°,
金屬棒勻速下滑時速度最大,此時棒所受的安培力F=BIL,
由于I=$\frac{{BL{v_m}}}{R_總}$,故:
${R_總}={R_{ab}}+{R_1}+\frac{{{R_2}{R_L}}}{{{R_2}+{R_L}}}=(1+2+\frac{4×12}{4+12})Ω=6Ω$,
從圖上得:vm=18.75m/s,
當金屬棒勻速下滑時速度最大,有:mgsina=F,所以mgsina=$\frac{{{B^2}{L^2}{v_m}}}{R_總}$,
得:$B=\sqrt{\frac{{mgsinα•{R_總}}}{{{V_m}•{L^2}}}}=\sqrt{\frac{{0.1×10×\frac{1}{2}×6}}{{18.75×0.{8^2}}}}T$=0.5T;        
(2)由動能定理:$mg•S•sinα-Q=\frac{1}{2}m{v_m}^2-0$,
解得:$Q=mg•S•sinα-\frac{1}{2}m{v_m}^2$=32.42J;     
(3)改變電阻箱R2的值后,金屬棒勻速下滑時的速度為vm′,故mgsinα=BIL,${R_并}′=\frac{{{R_2}{R_L}}}{{{R_2}+{R_L}}}=(\frac{{4{R_2}}}{{4+{R_2}}})Ω$,
R2消耗的功率:${P_2}=\frac{{{U^2}_并}}{R_2}=\frac{{{{({I_總}{R_并}′)}^2}}}{R_2}=\frac{{{{(\frac{mgsinα}{BL}•{R_并}′)}^2}}}{R_2}={(\frac{mgsinα}{BL})^2}•\frac{{{{(\frac{{4{R_2}}}{{4+{R_2}}})}^h}}}{R_2}={(\frac{mgsinα}{BL})^2}×\frac{{16{R_2}}}{{16+8{R_2}+{R_2}^2}}={(\frac{mgsinα}{BL})^2}×\frac{16}{{\frac{16}{R_2}+8+{R_2}}}$,
當R2=4Ω時,R2消耗的功率最大:
P2m=W=1.5625W.           
答:(1)斜面傾角α是30°,磁感應強度B的大小是0.5T;
(2)若金屬棒下滑距離為60m時速度恰達到最大,金屬棒由靜止開始下滑100m的過程中,整個電路產生的電熱是32.42J;
(3)改變電阻箱R2的值,當R2為4Ω時,金屬棒勻速下滑時R2消耗的功率最大,消耗的最大功率為1.5625W.

點評 本題是電磁感應中的力學問題,由速度圖象求得加速度,推導安培力與速度的表達式是關鍵步驟,難點是運用數(shù)學知識分析R2消耗的功率何時最大.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:多選題

19.下列關于物體加速度的說法中正確的是( 。
A.甲、乙兩個物體沿同一直線、同一方向(設為正方向)運動,甲的加速度為2 m/s2,乙的加速度為-3 m/s2,則乙的加速度比甲的加速度大
B.v0<0,a<0,物體做減速運動
C.上海磁懸浮列車的最高速度可達430 km/h,它的加速度一定很大
D.一個做變速直線運動的物體,加速度逐漸減小時該物體的速度可能在增大

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

20.如圖所示A、B兩小球質量分別為m、2m、A、B間有一被壓縮了的彈簧以及一根細線相連,水平面光滑,已知彈簧彈力為F,當剪斷細線瞬間兩小球的加速度大小分別為aA=$\frac{F}{m}$,aB=$\frac{F}{2m}$,方向分別為aA向水平向左,aB向水平向右.

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

15.如圖所示,虛線PQ、MN間存在水平勻強電場,一帶電粒子質量為m=2.0×10-11kg、電荷量為q=+1.0×10-5C,從a點由靜止開始經電壓為U=100V的電場加速后,垂直于勻強電場進入勻強電場中,從虛線MN的某點b(圖中未畫出)離開勻強電場時速度與電場方向成30°角.已知PQ、MN間距為20cm,帶電粒子的重力忽略不計.求:
(1)帶電粒子剛進入勻強電場時的速率v1
(2)勻強電場的場強大小
(3)ab兩點間的電勢差.

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

2.如圖所示,在豎直平面上有兩根很長的平行豎直軌道,軌道間有垂直軌道平面交替排列的勻強磁場B1和B2,B1=B2=1.0T,B1和B2的方向相反,兩磁場始終豎直向上做勻速運動.垂直軌道有一金屬框abcd,并且與之絕緣.已知金屬框的總質量為4.75×103kg,運動時所受阻力f=500N,金屬框垂直軌道的邊長Lcd=2.0m,兩磁場的寬度均與金屬框的邊長Lad相同,金屬框整個回路的電阻R=9.0×10-4Ω,g取10m/s2.假如金屬框以v1=10m/s的速度勻速上升,求:
(1)金屬框中感應電流的大小及圖示時刻感應電流的方向;
(2)磁場向上運動速度v0的大小.

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

12.如圖所示,勻強電場電場線與AC平行,AB與AC成60°角,把10-8C的負電荷A移到B,電場力做功6×10-8J,AB間距離6cm,則場強方向為與CA平行且向下,如B處電勢為1V,則A處為-5V,電子在A點的電勢能為5eV.

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

19.如圖所示,A板和B板為平行板電容器的兩極板,其中A板帶負電,B板帶正電,兩極板的中央都有一個小空隙可以允許粒子穿過,兩板間的電勢差的大小為U=1×105V,B極板的右上方存在著一個圓心為O1的圓柱形勻強磁場區(qū)域,磁感應強度B=0.10T,磁場區(qū)域半徑r=$\frac{2}{3}$$\sqrt{3}$m,磁場的方向垂直于紙面向里.今有質量m=3.2×10-26kg、帶電荷量q=-1.6×10-19C的某種粒子,從A極板小孔處極小的初速度(其方向由A到B,大小可以視為零)進入兩平行金屬板之間的區(qū)域.圖中A、B板上的兩個小孔和O1三點共線.粒子穿越圓柱形磁場后恰好從磁場區(qū)域的最右端C點穿出,立即進入一個豎直方向的有界勻強電場,其左右邊界分別為DE和FH,兩邊界間的距離 為8m,上邊和下邊沒有邊界.勻強電場的場強大小為E=3.75×104N/C,方向在豎直方向上.試求:
(1)該粒子剛剛進入圓柱形勻強磁場區(qū)域時的速度大小;
(2)該粒子通過圓形磁場區(qū)域所用的時間:
(3)該粒子在有界勻強電場中的位移大。

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

16.用一根長為l的絲線吊著一質量為m、帶電荷量為q的小球,小球靜止在水平向右的勻強電場中,如圖所示,絲線與豎直方向成37°角.現(xiàn)突然將該電場方向變?yōu)橄蛳碌笮〔蛔,不考慮因電場的改變而帶來的其他影響(sin37°=0.6,cos37°=0.8,重力加速度為g),求:勻強電場的電場強度的大。

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

17.有一直流電動機,把它接入電壓為0.2V的電路時,電動機不轉,測得流過電動機的電流是0.4A;若把它接入電壓為2V的電路中,電動機正常工作,工作時的電流是1.0A.問:
(1)電動機線圈的電阻為多大?
(2)電動機正常工作時的輸出功率為多大?
(3)如果在電動機正常工作時,轉子頭然被卡住,電動機的發(fā)熱功率是多大?

查看答案和解析>>

同步練習冊答案