圖6-15
(2)如圖6-16,將N個這樣的振子放在該軌道上,最左邊的振子1被壓縮至彈簧為某一長度后鎖定,靜止在適當位置上,這時它的彈性勢能為E0.其余各振子間都有一定的距離,現(xiàn)解除對振子1的鎖定,任其自由運動,當它第一次恢復(fù)到自然長度時,剛好與振子2碰撞,此后,繼續(xù)發(fā)生一系列碰撞,每個振子被碰后剛好都是在彈簧第一次恢復(fù)到自然長度時與下一個振子相碰.求所有可能的碰撞都發(fā)生后,每個振子彈性勢能的最大值.已知本題中兩球發(fā)生碰撞時,速度交換,即一球碰后的速度等于另一球碰前的速度.
圖6-16
解析:(1)設(shè)每個小球質(zhì)量為m,以u1、u2分別表示彈簧恢復(fù)到自然長度時左右兩端小球的速度,由動量守恒和能量守恒定律有
mu1+mu2=mu0(以向右為速度正方向)
mu12+mu22=mu02
解得u1=u0,u2=0或u1=0,u2=u0
由于振子從初始狀態(tài)到彈簧恢復(fù)到自然長度的過程中,彈簧一直是壓縮狀態(tài),彈力使左端小球持續(xù)減速,使右端小球持續(xù)加速,因此應(yīng)該取解:u1=0,u2=u0.
(2)以v1、v1′分別表示振子1解除鎖定后彈簧恢復(fù)到自然長度時左右兩小球的速度,規(guī)定向右為速度的正方向,由動量守恒和能量守恒定律
mv1+mv1′=0
mv12+mv1′2=E0
解得v1=,v1′=-或v1=-,v1′=.
在這一過程中,彈簧一直是壓縮狀態(tài),彈性力使左端小球向左加速,右端小球向右加速,故應(yīng)取解:
v1=-,v1′=
振子1與振子2碰撞后,由于交換速度,振子1右端小球速度變?yōu)?,左端小球速度仍為v1.此后兩小球都向左運動,當它們向左的速度相同時,彈簧被拉伸至最長,彈性勢能最大,設(shè)此速度為v10,根據(jù)動量守恒定律:
2mv10=mv1
用E1表示最大彈性勢能,由能量守恒有
mv102+mv102+E1=mv12
解得E1=E0
振子2被碰撞后瞬間,左端小球速度為,右端小球速度為0.以后彈簧被壓縮,當彈簧再恢復(fù)到自然長度時,根據(jù)(1)題結(jié)果,左端小球速度v2=0,右端小球速度v2′=,與振子3碰撞,由于交換速度,振子2右端小球速度變?yōu)?,振子2靜止,彈簧為自然長度,彈性勢能為E2=0.
同樣分析可得
E2=E3=…=EN-1=0
振子N被碰撞后瞬間,左端小球速度vN-1′=,右端小球速度為0,彈簧處于自然長度.此后兩小球都向右運動,彈簧被壓縮,當它們向右的速度相同時,彈簧被壓縮至最短,彈性勢能最大.設(shè)此速度為vN0,根據(jù)動量守恒定律,
2mvN0=mvN-1′
用EN表示最大彈性勢能,根據(jù)能量守恒,有
mvN02+mvN02+EN=mvN-12
解得EN=E0.
答案:(1)u1=0,u2=u0 (2)EN=E0
科目:高中物理 來源: 題型:
I1I2(R1-R2) |
I2-I1 |
I1I2(R1-R2) |
I2-I1 |
I1R1-I2R2 |
I2-I1 |
I1R1-I2R2 |
I2-I1 |
查看答案和解析>>
科目:高中物理 來源: 題型:
(1)如圖6-15,在光滑水平長直軌道上,放著一個靜止的彈簧振子,它由一輕彈簧兩端各連接一個小球構(gòu)成,兩小球質(zhì)量相等.現(xiàn)突然給左端小球一個向右的速度u0,求彈簧第一次恢復(fù)到自然長度時,每個小球的速度.
(2)如圖6-16,將N個這樣的振子放在該軌道上,最左邊的振子1被壓縮至彈簧為某一長度后鎖定,靜止在適當位置上,這時它的彈性勢能為E0.其余各振子間都有一定的距離,現(xiàn)解除對振子1的鎖定,任其自由運動,當它第一次恢復(fù)到自然長度時,剛好與振子2碰撞,此后,繼續(xù)發(fā)生一系列碰撞,每個振子被碰后剛好都是在彈簧第一次恢復(fù)到自然長度時與下一個振子相碰.求所有可能的碰撞都發(fā)生后,每個振子彈性勢能的最大值.已知本題中兩球發(fā)生碰撞時,速度交換,即一球碰后的速度等于另一球碰前的速度.
圖6-15
圖6-16
查看答案和解析>>
科目:高中物理 來源: 題型:閱讀理解
第七部分 熱學(xué)
熱學(xué)知識在奧賽中的要求不以深度見長,但知識點卻非常地多(考綱中羅列的知識點幾乎和整個力學(xué)——前五部分——的知識點數(shù)目相等)。而且,由于高考要求對熱學(xué)的要求逐年降低(本屆尤其低得“離譜”,連理想氣體狀態(tài)方程都沒有了),這就客觀上給奧賽培訓(xùn)增加了負擔。因此,本部分只能采新授課的培訓(xùn)模式,將知識點和例題講解及時地結(jié)合,爭取讓學(xué)員學(xué)一點,就領(lǐng)會一點、鞏固一點,然后再層疊式地往前推進。
一、分子動理論
1、物質(zhì)是由大量分子組成的(注意分子體積和分子所占據(jù)空間的區(qū)別)
對于分子(單原子分子)間距的計算,氣體和液體可直接用,對固體,則與分子的空間排列(晶體的點陣)有關(guān)。
【例題1】如圖6-1所示,食鹽(NaCl)的晶體是由鈉離子(圖中的白色圓點表示)和氯離子(圖中的黑色圓點表示)組成的,離子鍵兩兩垂直且鍵長相等。已知食鹽的摩爾質(zhì)量為58.5×10-3kg/mol,密度為2.2×103kg/m3,阿伏加德羅常數(shù)為6.0×1023mol-1,求食鹽晶體中兩個距離最近的鈉離子中心之間的距離。
【解說】題意所求即圖中任意一個小立方塊的變長(設(shè)為a)的倍,所以求a成為本題的焦點。
由于一摩爾的氯化鈉含有NA個氯化鈉分子,事實上也含有2NA個鈉離子(或氯離子),所以每個鈉離子占據(jù)空間為 v =
而由圖不難看出,一個離子占據(jù)的空間就是小立方體的體積a3 ,
即 a3 = = ,最后,鄰近鈉離子之間的距離l = a
【答案】3.97×10-10m 。
〖思考〗本題還有沒有其它思路?
〖答案〗每個離子都被八個小立方體均分,故一個小立方體含有×8個離子 = 分子,所以…(此法普遍適用于空間點陣比較復(fù)雜的晶體結(jié)構(gòu)。)
2、物質(zhì)內(nèi)的分子永不停息地作無規(guī)則運動
固體分子在平衡位置附近做微小振動(振幅數(shù)量級為0.1),少數(shù)可以脫離平衡位置運動。液體分子的運動則可以用“長時間的定居(振動)和短時間的遷移”來概括,這是由于液體分子間距較固體大的結(jié)果。氣體分子基本“居無定所”,不停地遷移(常溫下,速率數(shù)量級為102m/s)。
無論是振動還是遷移,都具備兩個特點:a、偶然無序(雜亂無章)和統(tǒng)計有序(分子數(shù)比率和速率對應(yīng)一定的規(guī)律——如麥克斯韋速率分布函數(shù),如圖6-2所示);b、劇烈程度和溫度相關(guān)。
氣體分子的三種速率。最可幾速率vP :f(v) = (其中ΔN表示v到v +Δv內(nèi)分子數(shù),N表示分子總數(shù))極大時的速率,vP == ;平均速率:所有分子速率的算術(shù)平均值, ==;方均根速率:與分子平均動能密切相關(guān)的一個速率,==〔其中R為普適氣體恒量,R = 8.31J/(mol.K)。k為玻耳茲曼常量,k = = 1.38×10-23J/K 〕
【例題2】證明理想氣體的壓強P = n,其中n為分子數(shù)密度,為氣體分子平均動能。
【證明】氣體的壓強即單位面積容器壁所承受的分子的撞擊力,這里可以設(shè)理想氣體被封閉在一個邊長為a的立方體容器中,如圖6-3所示。
考查yoz平面的一個容器壁,P = ①
設(shè)想在Δt時間內(nèi),有Nx個分子(設(shè)質(zhì)量為m)沿x方向以恒定的速率vx碰撞該容器壁,且碰后原速率彈回,則根據(jù)動量定理,容器壁承受的壓力
F == ②
在氣體的實際狀況中,如何尋求Nx和vx呢?
考查某一個分子的運動,設(shè)它的速度為v ,它沿x、y、z三個方向分解后,滿足
v2 = + +
分子運動雖然是雜亂無章的,但仍具有“偶然無序和統(tǒng)計有序”的規(guī)律,即
= + + = 3 ③
這就解決了vx的問題。另外,從速度的分解不難理解,每一個分子都有機會均等的碰撞3個容器壁的可能。設(shè)Δt = ,則
Nx = ·3N總 = na3 ④
注意,這里的是指有6個容器壁需要碰撞,而它們被碰的幾率是均等的。
結(jié)合①②③④式不難證明題設(shè)結(jié)論。
〖思考〗此題有沒有更簡便的處理方法?
〖答案〗有。“命令”所有分子以相同的速率v沿+x、?x、+y、?y、+z、?z這6個方向運動(這樣造成的宏觀效果和“雜亂無章”地運動時是一樣的),則 Nx =N總 = na3 ;而且vx = v
所以,P = = ==nm = n
3、分子間存在相互作用力(注意分子斥力和氣體分子碰撞作用力的區(qū)別),而且引力和斥力同時存在,宏觀上感受到的是其合效果。
分子力是保守力,分子間距改變時,分子力做的功可以用分子勢能的變化表示,分子勢能EP隨分子間距的變化關(guān)系如圖6-4所示。
分子勢能和動能的總和稱為物體的內(nèi)能。
二、熱現(xiàn)象和基本熱力學(xué)定律
1、平衡態(tài)、狀態(tài)參量
a、凡是與溫度有關(guān)的現(xiàn)象均稱為熱現(xiàn)象,熱學(xué)是研究熱現(xiàn)象的科學(xué)。熱學(xué)研究的對象都是有大量分子組成的宏觀物體,通稱為熱力學(xué)系統(tǒng)(簡稱系統(tǒng))。當系統(tǒng)的宏觀性質(zhì)不再隨時間變化時,這樣的狀態(tài)稱為平衡態(tài)。
b、系統(tǒng)處于平衡態(tài)時,所有宏觀量都具有確定的值,這些確定的值稱為狀態(tài)參量(描述氣體的狀態(tài)參量就是P、V和T)。
c、熱力學(xué)第零定律(溫度存在定律):若兩個熱力學(xué)系統(tǒng)中的任何一個系統(tǒng)都和第三個熱力學(xué)系統(tǒng)處于熱平衡狀態(tài),那么,這兩個熱力學(xué)系統(tǒng)也必定處于熱平衡。這個定律反映出:處在同一熱平衡狀態(tài)的所有的熱力學(xué)系統(tǒng)都具有一個共同的宏觀特征,這一特征是由這些互為熱平衡系統(tǒng)的狀態(tài)所決定的一個數(shù)值相等的狀態(tài)函數(shù),這個狀態(tài)函數(shù)被定義為溫度。
2、溫度
a、溫度即物體的冷熱程度,溫度的數(shù)值表示法稱為溫標。典型的溫標有攝氏溫標t、華氏溫標F(F = t + 32)和熱力學(xué)溫標T(T = t + 273.15)。
b、(理想)氣體溫度的微觀解釋: = kT (i為分子的自由度 = 平動自由度t + 轉(zhuǎn)動自由度r + 振動自由度s 。對單原子分子i = 3 ,“剛性”〈忽略振動,s = 0,但r = 2〉雙原子分子i = 5 。對于三個或三個以上的多原子分子,i = 6 。能量按自由度是均分的),所以說溫度是物質(zhì)分子平均動能的標志。
c、熱力學(xué)第三定律:熱力學(xué)零度不可能達到。(結(jié)合分子動理論的觀點2和溫度的微觀解釋很好理解。)
3、熱力學(xué)過程
a、熱傳遞。熱傳遞有三種方式:傳導(dǎo)(對長L、橫截面積S的柱體,Q = KSΔ
查看答案和解析>>
科目:高中物理 來源: 題型:
圖6-15
該實驗中,為驗證小車質(zhì)量M不變時,加速度與外力F成正比,小車質(zhì)量M和砂質(zhì)量m分別選取下列四組值:
A.M=500 g,m分別為50 g、70 g、100 g、125 g
B.M=500 g,m分別為20 g、30 g、40 g、50 g
C.M=200 g,m分別為50 g、75 g、100 g、125 g
D.M=200 g,m分別為30 g、40 g、50 g、60 g
若其他操作都正確,那么在選用____________組值測量時所畫出的aF圖線比較準確,在選用此組值,m取____________g時實驗誤差較大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com