(1)如圖6-15,在光滑水平長直軌道上,放著一個靜止的彈簧振子,它由一輕彈簧兩端各連接一個小球構成,兩小球質(zhì)量相等.現(xiàn)突然給左端小球一個向右的速度u0,求彈簧第一次恢復到自然長度時,每個小球的速度.
(2)如圖6-16,將N個這樣的振子放在該軌道上,最左邊的振子1被壓縮至彈簧為某一長度后鎖定,靜止在適當位置上,這時它的彈性勢能為E0.其余各振子間都有一定的距離,現(xiàn)解除對振子1的鎖定,任其自由運動,當它第一次恢復到自然長度時,剛好與振子2碰撞,此后,繼續(xù)發(fā)生一系列碰撞,每個振子被碰后剛好都是在彈簧第一次恢復到自然長度時與下一個振子相碰.求所有可能的碰撞都發(fā)生后,每個振子彈性勢能的最大值.已知本題中兩球發(fā)生碰撞時,速度交換,即一球碰后的速度等于另一球碰前的速度.
圖6-15
圖6-16
(1)u1=0,u2=u0 (2)EN=E0
(1)設每個小球質(zhì)量為m,以u1、u2分別表示彈簧恢復到自然長度時左右兩端小球的速度,由動量守恒和能量守恒定律有
mu1+mu2=mu0(以向右為速度正方向)
mu12+mu22=mu02
解得u1=u0,u2=0或u1=0,u2=u0
由于振子從初始狀態(tài)到彈簧恢復到自然長度的過程中,彈簧一直是壓縮狀態(tài),彈力使左端小球持續(xù)減速,使右端小球持續(xù)加速,因此應該取解析u1=0,u2=u0.
(2)以v1、v1′分別表示振子1解除鎖定后彈簧恢復到自然長度時左右兩小球的速度,規(guī)定向右為速度的正方向,由動量守恒和能量守恒定律
mv1+mv1′=0
mv12+mv1′2=E0
解得v1=,v1′=-或v1=-,v1′=.
在這一過程中,彈簧一直是壓縮狀態(tài),彈性力使左端小球向左加速,右端小球向右加速,故應取解析
v1=-,v1′=
振子1與振子2碰撞后,由于交換速度,振子1右端小球速度變?yōu)?,左端小球速度仍為v1.此后兩小球都向左運動,當它們向左的速度相同時,彈簧被拉伸至最長,彈性勢能最大,設此速度為v10,根據(jù)動量守恒定律:
2mv10=mv1
用E1表示最大彈性勢能,由能量守恒有
mv102+mv102+E1=mv12
解得E1=E0
振子2被碰撞后瞬間,左端小球速度為,右端小球速度為0.以后彈簧被壓縮,當彈簧再恢復到自然長度時,根據(jù)(1)題結(jié)果,左端小球速度v2=0,右端小球速度v2′=,與振子3碰撞,由于交換速度,振子2右端小球速度變?yōu)?,振子2靜止,彈簧為自然長度,彈性勢能為E2=0.
同樣分析可得
E2=E3=…=EN-1=0
振子N被碰撞后瞬間,左端小球速度vN-1′=,右端小球速度為0,彈簧處于自然長度.此后兩小球都向右運動,彈簧被壓縮,當它們向右的速度相同時,彈簧被壓縮至最短,彈性勢能最大.設此速度為vN0,根據(jù)動量守恒定律,
2mvN0=mvN-1′
用EN表示最大彈性勢能,根據(jù)能量守恒,有
mvN02+mvN02+EN=mvN-12
解得EN=E0.
科目:高中物理 來源: 題型:
I1I2(R1-R2) |
I2-I1 |
I1I2(R1-R2) |
I2-I1 |
I1R1-I2R2 |
I2-I1 |
I1R1-I2R2 |
I2-I1 |
查看答案和解析>>
科目:高中物理 來源: 題型:
圖6-15
(2)如圖6-16,將N個這樣的振子放在該軌道上,最左邊的振子1被壓縮至彈簧為某一長度后鎖定,靜止在適當位置上,這時它的彈性勢能為E0.其余各振子間都有一定的距離,現(xiàn)解除對振子1的鎖定,任其自由運動,當它第一次恢復到自然長度時,剛好與振子2碰撞,此后,繼續(xù)發(fā)生一系列碰撞,每個振子被碰后剛好都是在彈簧第一次恢復到自然長度時與下一個振子相碰.求所有可能的碰撞都發(fā)生后,每個振子彈性勢能的最大值.已知本題中兩球發(fā)生碰撞時,速度交換,即一球碰后的速度等于另一球碰前的速度.
圖6-16
查看答案和解析>>
科目:高中物理 來源: 題型:閱讀理解
第七部分 熱學
熱學知識在奧賽中的要求不以深度見長,但知識點卻非常地多(考綱中羅列的知識點幾乎和整個力學——前五部分——的知識點數(shù)目相等)。而且,由于高考要求對熱學的要求逐年降低(本屆尤其低得“離譜”,連理想氣體狀態(tài)方程都沒有了),這就客觀上給奧賽培訓增加了負擔。因此,本部分只能采新授課的培訓模式,將知識點和例題講解及時地結(jié)合,爭取讓學員學一點,就領會一點、鞏固一點,然后再層疊式地往前推進。
一、分子動理論
1、物質(zhì)是由大量分子組成的(注意分子體積和分子所占據(jù)空間的區(qū)別)
對于分子(單原子分子)間距的計算,氣體和液體可直接用,對固體,則與分子的空間排列(晶體的點陣)有關。
【例題1】如圖6-1所示,食鹽(NaCl)的晶體是由鈉離子(圖中的白色圓點表示)和氯離子(圖中的黑色圓點表示)組成的,離子鍵兩兩垂直且鍵長相等。已知食鹽的摩爾質(zhì)量為58.5×10-3kg/mol,密度為2.2×103kg/m3,阿伏加德羅常數(shù)為6.0×1023mol-1,求食鹽晶體中兩個距離最近的鈉離子中心之間的距離。
【解說】題意所求即圖中任意一個小立方塊的變長(設為a)的倍,所以求a成為本題的焦點。
由于一摩爾的氯化鈉含有NA個氯化鈉分子,事實上也含有2NA個鈉離子(或氯離子),所以每個鈉離子占據(jù)空間為 v =
而由圖不難看出,一個離子占據(jù)的空間就是小立方體的體積a3 ,
即 a3 = = ,最后,鄰近鈉離子之間的距離l = a
【答案】3.97×10-10m 。
〖思考〗本題還有沒有其它思路?
〖答案〗每個離子都被八個小立方體均分,故一個小立方體含有×8個離子 = 分子,所以…(此法普遍適用于空間點陣比較復雜的晶體結(jié)構。)
2、物質(zhì)內(nèi)的分子永不停息地作無規(guī)則運動
固體分子在平衡位置附近做微小振動(振幅數(shù)量級為0.1),少數(shù)可以脫離平衡位置運動。液體分子的運動則可以用“長時間的定居(振動)和短時間的遷移”來概括,這是由于液體分子間距較固體大的結(jié)果。氣體分子基本“居無定所”,不停地遷移(常溫下,速率數(shù)量級為102m/s)。
無論是振動還是遷移,都具備兩個特點:a、偶然無序(雜亂無章)和統(tǒng)計有序(分子數(shù)比率和速率對應一定的規(guī)律——如麥克斯韋速率分布函數(shù),如圖6-2所示);b、劇烈程度和溫度相關。
氣體分子的三種速率。最可幾速率vP :f(v) = (其中ΔN表示v到v +Δv內(nèi)分子數(shù),N表示分子總數(shù))極大時的速率,vP == ;平均速率:所有分子速率的算術平均值, ==;方均根速率:與分子平均動能密切相關的一個速率,==〔其中R為普適氣體恒量,R = 8.31J/(mol.K)。k為玻耳茲曼常量,k = = 1.38×10-23J/K 〕
【例題2】證明理想氣體的壓強P = n,其中n為分子數(shù)密度,為氣體分子平均動能。
【證明】氣體的壓強即單位面積容器壁所承受的分子的撞擊力,這里可以設理想氣體被封閉在一個邊長為a的立方體容器中,如圖6-3所示。
考查yoz平面的一個容器壁,P = ①
設想在Δt時間內(nèi),有Nx個分子(設質(zhì)量為m)沿x方向以恒定的速率vx碰撞該容器壁,且碰后原速率彈回,則根據(jù)動量定理,容器壁承受的壓力
F == ②
在氣體的實際狀況中,如何尋求Nx和vx呢?
考查某一個分子的運動,設它的速度為v ,它沿x、y、z三個方向分解后,滿足
v2 = + +
分子運動雖然是雜亂無章的,但仍具有“偶然無序和統(tǒng)計有序”的規(guī)律,即
= + + = 3 ③
這就解決了vx的問題。另外,從速度的分解不難理解,每一個分子都有機會均等的碰撞3個容器壁的可能。設Δt = ,則
Nx = ·3N總 = na3 ④
注意,這里的是指有6個容器壁需要碰撞,而它們被碰的幾率是均等的。
結(jié)合①②③④式不難證明題設結(jié)論。
〖思考〗此題有沒有更簡便的處理方法?
〖答案〗有!懊睢彼蟹肿右韵嗤乃俾蕍沿+x、?x、+y、?y、+z、?z這6個方向運動(這樣造成的宏觀效果和“雜亂無章”地運動時是一樣的),則 Nx =N總 = na3 ;而且vx = v
所以,P = = ==nm = n
3、分子間存在相互作用力(注意分子斥力和氣體分子碰撞作用力的區(qū)別),而且引力和斥力同時存在,宏觀上感受到的是其合效果。
分子力是保守力,分子間距改變時,分子力做的功可以用分子勢能的變化表示,分子勢能EP隨分子間距的變化關系如圖6-4所示。
分子勢能和動能的總和稱為物體的內(nèi)能。
二、熱現(xiàn)象和基本熱力學定律
1、平衡態(tài)、狀態(tài)參量
a、凡是與溫度有關的現(xiàn)象均稱為熱現(xiàn)象,熱學是研究熱現(xiàn)象的科學。熱學研究的對象都是有大量分子組成的宏觀物體,通稱為熱力學系統(tǒng)(簡稱系統(tǒng))。當系統(tǒng)的宏觀性質(zhì)不再隨時間變化時,這樣的狀態(tài)稱為平衡態(tài)。
b、系統(tǒng)處于平衡態(tài)時,所有宏觀量都具有確定的值,這些確定的值稱為狀態(tài)參量(描述氣體的狀態(tài)參量就是P、V和T)。
c、熱力學第零定律(溫度存在定律):若兩個熱力學系統(tǒng)中的任何一個系統(tǒng)都和第三個熱力學系統(tǒng)處于熱平衡狀態(tài),那么,這兩個熱力學系統(tǒng)也必定處于熱平衡。這個定律反映出:處在同一熱平衡狀態(tài)的所有的熱力學系統(tǒng)都具有一個共同的宏觀特征,這一特征是由這些互為熱平衡系統(tǒng)的狀態(tài)所決定的一個數(shù)值相等的狀態(tài)函數(shù),這個狀態(tài)函數(shù)被定義為溫度。
2、溫度
a、溫度即物體的冷熱程度,溫度的數(shù)值表示法稱為溫標。典型的溫標有攝氏溫標t、華氏溫標F(F = t + 32)和熱力學溫標T(T = t + 273.15)。
b、(理想)氣體溫度的微觀解釋: = kT (i為分子的自由度 = 平動自由度t + 轉(zhuǎn)動自由度r + 振動自由度s 。對單原子分子i = 3 ,“剛性”〈忽略振動,s = 0,但r = 2〉雙原子分子i = 5 。對于三個或三個以上的多原子分子,i = 6 。能量按自由度是均分的),所以說溫度是物質(zhì)分子平均動能的標志。
c、熱力學第三定律:熱力學零度不可能達到。(結(jié)合分子動理論的觀點2和溫度的微觀解釋很好理解。)
3、熱力學過程
a、熱傳遞。熱傳遞有三種方式:傳導(對長L、橫截面積S的柱體,Q = KSΔ
查看答案和解析>>
科目:高中物理 來源: 題型:
圖6-15
該實驗中,為驗證小車質(zhì)量M不變時,加速度與外力F成正比,小車質(zhì)量M和砂質(zhì)量m分別選取下列四組值:
A.M=500 g,m分別為50 g、70 g、100 g、125 g
B.M=500 g,m分別為20 g、30 g、40 g、50 g
C.M=200 g,m分別為50 g、75 g、100 g、125 g
D.M=200 g,m分別為30 g、40 g、50 g、60 g
若其他操作都正確,那么在選用____________組值測量時所畫出的aF圖線比較準確,在選用此組值,m取____________g時實驗誤差較大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com