足球比賽中,經(jīng)常使用“邊路突破,下底傳中”的戰(zhàn)術(shù),即攻方隊員帶球沿邊線前進,到底線附近進行傳中.某足球場長90m、寬60m.攻方前鋒在中線處將足球沿邊線向前踢出,足球的運動可視為在地面上做初速度為l2m/s的勻減速直線運動,加速度大小為2m/s2.試求:
(1)足球從開始做勻減速運動到停下來的位移為多大?
(2)足球開始做勻減速直線運動的同時,該前鋒隊員沿邊線向前追趕足球.他的啟動過程可以視為初速度為0,加速度為2m/s2的勻加速直線運動,他能達到的最大速度為8m/s.該前鋒隊員至少經(jīng)過多長時間能追上足球?
(3)若該前鋒隊員追上足球后,又將足球以速度v沿邊線向前踢出,足球的運動仍視為加速度大小為2m/s2的勻減速直線運動.與此同時,由于體力的原因,該前鋒隊員以6m/s的速度做勻速直線運動向前追趕足球,若該前鋒隊員恰能在底線追上足球,求v多大?
分析:(1)根據(jù)速度時間公式求出足球勻減速直線運動的時間,從而根據(jù)平均速度公式求出足球的位移.
(2)根據(jù)速度時間公式求出運動員達到最大速度的時間和位移,然后運動員做勻速直線運動,結(jié)合位移關(guān)系求出追及的時間.
(3)結(jié)合運動員和足球的位移關(guān)系,運用運動學公式求出前鋒隊員在底線追上足球時的速度.
解答:解:(1)已知足球的初速度為v1=12m/s,加速度大小為a1=2m/s2
足球做勻減速運動的時間為:t1=
v1
a1
=
12
2
s=6s

運動位移為:x1=
v1
2
t1=
12
2
×6m=36m

(2)已知前鋒隊員的加速度為a2=2m/s2,最大速度為v2=8m/s,前鋒隊員做勻加速運動達到最大速度的時間和位移分別為:
t2=
v2
a2
=
8
2
s=4s

x2=
v2
2
t2=
8
2
×4m=16m

之后前鋒隊員做勻速直線運動,到足球停止運動時,其位移為:
x3=v2(t1-t2)=8×2m=16m.
由于x2+x3<x1,故足球停止運動時,前鋒隊員沒有追上足球,然后前鋒隊員繼續(xù)以最大速度勻速運動追趕足球,由勻速運動公式得
x1-(x2+x3)=v2t3
代入數(shù)據(jù)解得:t3=0.5s.
前鋒隊員追上足球的時間t=t1+t3=6.5s.
(3)此時足球距底線的距離為:x4=45-x1=9m.
設(shè)前鋒隊員運動到底線的時間為t4,則有x4=v4t4
足球在t4時間內(nèi)發(fā)生的位移為
x4=v3t4-
1
2
a1t42

聯(lián)立以上各式解得:v3=7.5m/s.
答:(1)足球從開始做勻減速運動到停下來的位移為36m.
(2)前鋒隊員至少經(jīng)過6.5s能追上足球.
(3)若該前鋒隊員恰能在底線追上足球,速度為7.5m/s.
點評:解決本題的關(guān)鍵理清足球和運動員的位移關(guān)系,結(jié)合運動學公式靈活求解.
練習冊系列答案
相關(guān)習題

科目:高中物理 來源: 題型:

足球比賽中,經(jīng)常使用“邊路突破,下底傳中”的戰(zhàn)術(shù),即攻方隊員帶球沿邊線前進,到底線附近進行傳中。某足球場長90m、寬60m。攻方前鋒在中線處將足球沿邊線向前踢出,足球的運動可視為在地面上做初速度為l2m/s的勻減速直線運動,加速度大小為2m/s2。試求:

1.足球從開始做勻減速運動到停下來的位移為多大?

2.足球開始做勻減速直線運動的同時,該前鋒隊員沿邊線向前追趕足球。他的啟動過程可以視為初速度為0,加速度為2m/s2的勻加速直線運動,他能達到的最大速度為8m/s。該前鋒隊員至少經(jīng)過多長時間能追上足球?

3.若該前鋒隊員追上足球后,又將足球以10m/s的速度沿邊線向前踢出,足球的運    動仍視為加速度大小為2m/s2的勻減速直線運動。與此同時,由于體力的原因,該前鋒隊員以6m/s的速度做勻速直線運動向前追趕足球,通過計算判斷該前鋒隊員能否在足球出底線前追上。

  

 

查看答案和解析>>

科目:高中物理 來源:2011年遼寧省沈陽市高一上學期期末教學質(zhì)量監(jiān)測物理卷 題型:計算題

足球比賽中,經(jīng)常使用“邊路突破,下底傳中”的戰(zhàn)術(shù),即攻方隊員帶球沿邊線前進,到底線附近進行傳中。某足球場長90m、寬60m。攻方前鋒在中線處將足球沿邊線向前踢出,足球的運動可視為在地面上做初速度為l2m/s的勻減速直線運動,加速度大小為2m/s2。試求:
【小題1】足球從開始做勻減速運動到停下來的位移為多大?
【小題2】足球開始做勻減速直線運動的同時,該前鋒隊員沿邊線向前追趕足球。他的啟動過程可以視為初速度為0,加速度為2m/s2的勻加速直線運動,他能達到的最大速度為8m/s。該前鋒隊員至少經(jīng)過多長時間能追上足球?
【小題3】若該前鋒隊員追上足球后,又將足球以10m/s的速度沿邊線向前踢出,足球的運   動仍視為加速度大小為2m/s2的勻減速直線運動。與此同時,由于體力的原因,該前鋒隊員以6m/s的速度做勻速直線運動向前追趕足球,通過計算判斷該前鋒隊員能否在足球出底線前追上。
  

查看答案和解析>>

科目:高中物理 來源:2011年遼寧省沈陽市高一上學期期末教學質(zhì)量監(jiān)測物理卷 題型:計算題

足球比賽中,經(jīng)常使用“邊路突破,下底傳中”的戰(zhàn)術(shù),即攻方隊員帶球沿邊線前進,到底線附近進行傳中。某足球場長90m、寬60m。攻方前鋒在中線處將足球沿邊線向前踢出,足球的運動可視為在地面上做初速度為l2m/s的勻減速直線運動,加速度大小為2m/s2。試求:

1.足球從開始做勻減速運動到停下來的位移為多大?

2.足球開始做勻減速直線運動的同時,該前鋒隊員沿邊線向前追趕足球。他的啟動過程可以視為初速度為0,加速度為2m/s2的勻加速直線運動,他能達到的最大速度為8m/s。該前鋒隊員至少經(jīng)過多長時間能追上足球?

3.若該前鋒隊員追上足球后,又將足球以10m/s的速度沿邊線向前踢出,足球的運    動仍視為加速度大小為2m/s2的勻減速直線運動。與此同時,由于體力的原因,該前鋒隊員以6m/s的速度做勻速直線運動向前追趕足球,通過計算判斷該前鋒隊員能否在足球出底線前追上。

  

 

查看答案和解析>>

科目:高中物理 來源:遼寧省期末題 題型:計算題

足球比賽中,經(jīng)常使用“邊路突破,下底傳中”的戰(zhàn)術(shù),即攻方隊員帶球沿邊線前進,到底線附近進行傳中。某足球場長90m、寬60m。攻方前鋒在中線處將足球沿邊線向前踢出,足球的運動可視為在地面上做初速度為12m/s的勻減速直線運動,加速度大小為2m/s2。試求:
(1)足球從開始做勻減速運動到停下來的位移為多大?
(2)足球開始做勻減速直線運動的同時,該前鋒隊員沿邊線向前追趕足球。他的啟動過程可以視為初速度為0,加速度為2m/s2的勻加速直線運動,他能達到的最大速度為8m/s。該前鋒隊員至少經(jīng)過多長時間能追上足球?
(3)若該前鋒隊員追上足球后,又將足球以10m/s的速度沿邊線向前踢出,足球的運動仍視為加速度大小為2m/s2的勻減速直線運動。與此同時,由于體力的原因,該前鋒隊員以6m/s的速度做勻速直線運動向前追趕足球,通過計算判斷該前鋒隊員能否在足球出底線前追上。

查看答案和解析>>

同步練習冊答案