精英家教網 > 高中物理 > 題目詳情
(2009?天津)2008年12月,天文學家們通過觀測的數(shù)據確認了銀河系中央的黑洞“人馬座A*”的質量與太陽質量的倍數(shù)關系.研究發(fā)現(xiàn),有一星體S2繞人馬座A*做橢圓運動,其軌道半長軸為9.50×102天文單位(地球公轉軌道的半徑為一個天文單位),人馬座A*就處在該橢圓的一個焦點上.觀測得到S2星的運行周期為15.2年.
(1)若將S2星的運行軌道視為半徑r=9.50×102天文單位的圓軌道,試估算人馬座A*的質量MA是太陽質量Ms的多少倍(結果保留一位有效數(shù)字);
(2)黑洞的第二宇宙速度極大,處于黑洞表面的粒子即使以光速運動,其具有的動能也不足以克服黑洞對它的引力束縛.由于引力的作用,黑洞表面處質量為m的粒子具有勢能為Ep=-G
MmR
(設粒子在離黑洞無限遠處的勢能為零),式中M、R分別表示黑洞的質量和半徑.已知引力常量G=6.7×10-11N?m2/kg2,光速c=3.0×108m/s,太陽質量Ms=2.0×1030kg,太陽半徑Rs=7.0×108m,不考慮相對論效應,利用上問結果,在經典力學范圍內求人馬座A*的半徑RA與太陽半徑Rg之比應小于多少(結果按四舍五入保留整數(shù)).
分析:研究S2星繞人馬座A*做圓周運動,根據萬有引力提供向心力,列出等式求出人馬座A*的質量.
研究地球繞太陽做圓周運動,根據萬有引力提供向心力,列出等式求出太陽的質量.
根據題目提供的信息,篩選出有用的信息,結合功能關系,求出問題.
解答:解:(1)S2星繞人馬座A*做圓周運動的向心力由人馬座A*對S2星的萬有引力提供,設S2星的質量為mS2,角速度為ω,周期為T,則G
MAmS2
r2
=mS2ω2r ①
ω=
T

設地球質量為mE,公轉軌道半徑為rE,周期為TE,研究地球繞太陽做圓周運動,根據萬有引力提供向心力則
G
MSmE
r
2
E
=mEω2rE
綜合上述三式得
MA
MS
=(
r
rE
)
3
(
TE
T
)
2

式中  TE=1年,rE=1天文單位,
代入數(shù)據可得
MA
MS
=4×106
(2)引力對粒子作用不到的地方即為無限遠,此時粒子的勢能為零.“處于黑洞表面的粒子即使以光速運動,其具有的動能也不足以克服黑洞對它的引力束縛”,說明了黑洞表面處以光速運動的粒子在遠離黑洞的過程中克服引力做功,粒子在到達無限遠之前,其動能便減小為零,此時勢能仍為負值,則其能量總和小于零,則有
1
2
mc2-G
Mm
R
<0  ④
依題意可知R=RA,M=MA
可得RA
2GMA
c2
  ⑤
代入數(shù)據得RA<1.2×1010 m
所以:
RA
RS
<17 
答:(1)人馬座A*的質量MA是太陽質量Ms的4×106倍,
(2)在經典力學范圍內求人馬座A*的半徑RA與太陽半徑Rg之比應小于17.
點評:本題考查天體運動的知識.其中第2小題為信息題,如“黑洞”“引力勢能”等陌生的知識都在題目中給出,考查學生提取信息,處理信息的能力,體現(xiàn)了能力立意.
求一個物理量之比,我們可以把這個物理量先用已知的物理量表示出來,再進行之比.
練習冊系列答案
相關習題

科目:高中物理 來源: 題型:

(2009?天津)如圖所示,直角坐標系xOy位于豎直平面內,在水平的x軸下方存在勻強磁場和勻強電場,磁場的磁感應為B,方向垂直xOy平面向里,電場線平行于y軸.一質量為m、電荷量為q的帶正電的小球,從y軸上的A點水平向右拋出,經x軸上的M點進入電場和磁場,恰能做勻速圓周運動,從x軸上的N點第一次離開電場和磁場,MN之間的距離為L,小球過M點時的速度方向與x軸的方向夾角為θ.不計空氣阻力,重力加速度為g,求
(1)電場強度E的大小和方向;
(2)小球從A點拋出時初速度v0的大。
(3)A點到x軸的高度h.

查看答案和解析>>

科目:高中物理 來源: 題型:

(2009?天津)如圖所示,質量m1=0.3kg 的小車靜止在光滑的水平面上,車長L=1.5m,現(xiàn)有質量m2=0.2kg可視為質點的物塊,以水平向右的速度v0=2m/s從左端滑上小車,最后在車面上某處與小車保持相對靜止.物塊與車面間的動摩擦因數(shù)μ=0.5,取g=10m/s2,求
(1)物塊在車面上滑行的時間t;
(2)要使物塊不從小車右端滑出,物塊滑上小車左端的速度v′0不超過多少?

查看答案和解析>>

科目:高中物理 來源: 題型:

(2009?天津模擬)據報道,我國將于今年十月發(fā)射首個火星探測器“螢火一號”,假設其發(fā)射過程為:先以第一宇宙速度環(huán)繞地球表面飛行,再調整速度進入地火轉移軌道,最后再一次調整速度以線速度v環(huán)繞火星表面飛行.若認為地球和火星都是質量分布均勻的球體,已知地球和火星的半徑之比為2:1,密度之比為7:5,則v約等于(  )

查看答案和解析>>

科目:高中物理 來源: 題型:

(2009?天津模擬)核聚變能以氘、氚等為燃料,具有安全、潔凈、儲量豐富三大優(yōu)點,是最終解決人類能源危機的最有效手段.
(1)兩個氘核
 
2
1
H
結合成一個氦核
 
3
2
He
時,要放出某種粒子,同時釋放出能量,寫出核反應的方程.若氘核的質量為m1,氦核的質量為m2,所放出粒子的質量為m3,求這個核反應中釋放出的能量為多少?
(2)要使兩個氘核能夠發(fā)生聚變反應,必須使它們以巨大的速度沖破庫侖斥力而碰到一起,已知當兩個氘核恰好能夠彼此接觸發(fā)生聚變時,它們的電勢能為
e2
ε0(2R)
(其中e為氘核的電量,R為氘核半徑,ε0為介電常數(shù),均為已知),則兩個相距較遠(可認為電勢能為零)的等速氘核,至少具有多大的速度才能在相向運動后碰在一起而發(fā)生聚變?
(3)當將氘核加熱成幾百萬度的等離子狀態(tài)時就可以使其獲得所需速度.有一種用磁場來“約束”高溫等離子體的裝置叫做“托卡馬克”,如圖所示為其“約束”原理圖:兩個同心圓的半徑分別為r1和r2,等離子體只在半徑為r1的圓形區(qū)域內反應,兩圓之間的環(huán)形區(qū)內存在著垂直于截面的勻強磁場.為保證速率為v的氘核從反應區(qū)進入磁場后不能從磁場區(qū)域的外邊界射出,所加磁場磁感應強度的最小值為多少?(不考慮速度大小對氘核質量的影響)

查看答案和解析>>

科目:高中物理 來源: 題型:

(2009?天津模擬)如圖所示,豎直面內有一絕緣軌道,AB部分是光滑的四分之一圓弧,圓弧半徑R=0.5m,B處切線水平,BC部分為水平粗糙直軌道.有一個帶負電的小滑塊(可視為質點)從A點由靜止開始下滑,運動到直軌道上的P處剛好停住.小滑塊的質量m=1kg,帶電量為q=-2.5×10-3C保持不變,滑塊小軌道BC部分間的動摩擦因數(shù)為μ=0.2,整個空間存在水平向右的勻強電場,電場強度大小為E=4.0×102N/C.(g=10m/s2
(1)求滑塊到達B點前瞬間對軌道的壓力大。
(2)求BP間的距離.

查看答案和解析>>

同步練習冊答案