分析 (1)粒子α在電場(chǎng)中只受電場(chǎng)力,做類平拋運(yùn)動(dòng),根據(jù)平拋運(yùn)動(dòng)基本公式列式求解即可求出初速度v0;
(2)粒子b到達(dá)N點(diǎn)有兩種路徑,畫出兩種運(yùn)動(dòng)路徑,由幾何關(guān)系得出半徑,再根據(jù)洛倫茲力提供向心力求解速度;
(3)設(shè)粒子b每次經(jīng)過(guò)x軸時(shí)交點(diǎn)為N1、N2、N3…,根據(jù)幾何關(guān)系求出相鄰兩交點(diǎn)之間的距離,根據(jù)帶電粒子在磁場(chǎng)中運(yùn)動(dòng)時(shí)間與周期的關(guān)系列式求解即可.
解答 解:(1)粒子α在電場(chǎng)中做類平拋運(yùn)動(dòng),則有:
$\frac{\sqrt{3}}{2}L={v}_{0}t$①
$\frac{L}{2}=\frac{1}{2}(\frac{qE}{m}){t}^{2}$ ②
解得:v0=$\sqrt{\frac{3qEL}{4m}}$
(2)粒子b到達(dá)N點(diǎn)有兩種路徑,
第一種:先在區(qū)域Ⅲ中圓周運(yùn)動(dòng),然后到區(qū)域Ⅱ中圓周運(yùn)動(dòng)再到達(dá)N點(diǎn),軌跡如圖①
幾何知識(shí)得ON=L=2r2cos30°-2r1cos30°③
且2r2=r1,$q{v}_B=\frac{m{v}_{\;}^{2}}{{r}_{1}}$④
解得${r}_{1}=\frac{2\sqrt{3}}{3}L$,${r}_{2}=\frac{\sqrt{3}}{3}L$,vb=$\frac{2\sqrt{3}qBL}{3m}$
第二種:在區(qū)域Ⅲ中圓周運(yùn)動(dòng)直接到達(dá)N點(diǎn),軌跡如圖②.由幾何知識(shí)得ON=L=2r1′cos30°⑤
且$q{v}_′B=\frac{m{v}_{′}^{2}}{{r}_{1}′}$⑥
解得${r}_{1}′=\frac{2\sqrt{3}}{3}L$,vb′=$\frac{\sqrt{3}qBL}{3m}$
(3)設(shè)粒子b每次經(jīng)過(guò)x軸時(shí)交點(diǎn)為N1、N2、N3…,并且相鄰兩交點(diǎn)之間的距離為△x=2r2cos30°=L⑥
粒子在區(qū)域Ⅲ中每段圓弧運(yùn)動(dòng)的時(shí)間${t}_{1}=\frac{1}{3}•\frac{2πm}{Bq}=\frac{2πm}{3Bq}$
粒子在區(qū)域Ⅱ中每段圓弧運(yùn)動(dòng)的時(shí)間${t}_{2}=\frac{2}{3}•\frac{2πm}{2Bq}=\frac{2πm}{3Bq}$
故可設(shè)t1=t2=t
若粒子b由第一種軌跡到達(dá)N1點(diǎn)和粒子c相遇,則${v}_{c}=\frac{L}{t}=\frac{3qBL}{2πm}$,
若粒子b由第二種軌跡到達(dá)x軸且速度方向右下方時(shí)和粒子c相遇,則粒子c運(yùn)動(dòng)的位移大小為nL,${v}_{c}=\frac{nL}{2nt}=\frac{3qBL}{4πm}$
若粒子b由第二種軌跡到達(dá)x軸且速度方向右上方時(shí)和粒子c相遇,則粒子c運(yùn)動(dòng)的位移大小為nL,${v}_{c}=\frac{nL}{(2n-3)t}=\frac{3nqBL}{(4n-6)πm}$(n=2,3,4…).
答:(1)若粒子a從o點(diǎn)沿與x軸正方向成30°角射入?yún)^(qū)域Ⅰ,且恰好經(jīng)過(guò)N點(diǎn),粒子a的初速度為$\sqrt{\frac{3qEL}{4m}}$;
(2)若粒子b從o點(diǎn)沿與x軸正方向成60°角射入?yún)^(qū)域Ⅲ,且恰好經(jīng)過(guò)N點(diǎn).粒子b的速率為$\frac{2\sqrt{3}qBL}{3m}$或$\frac{\sqrt{3}qBL}{3m}$;
(3)若粒子b從o點(diǎn)以(2)問(wèn)中速率沿與x軸正方向成60°角射入?yún)^(qū)域Ⅲ的同時(shí),粒子c也從o點(diǎn)以速率vc沿x軸正方向勻速運(yùn)動(dòng),最終兩粒子相遇,則vc的可能值為$\frac{3nqBL}{(4n-6)πm}$(n=2,3,4…).
點(diǎn)評(píng) 帶電粒子在組合場(chǎng)中的運(yùn)動(dòng)問(wèn)題,首先要運(yùn)用動(dòng)力學(xué)方法分析清楚粒子的運(yùn)動(dòng)情況,再選擇合適方法處理.對(duì)于勻變速曲線運(yùn)動(dòng),常常運(yùn)用運(yùn)動(dòng)的分解法,將其分解為兩個(gè)直線的合成,由牛頓第二定律和運(yùn)動(dòng)學(xué)公式結(jié)合求解;對(duì)于磁場(chǎng)中圓周運(yùn)動(dòng),要正確畫出軌跡,由幾何知識(shí)求解半徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中物理 來(lái)源: 題型:計(jì)算題
查看答案和解析>>
科目:高中物理 來(lái)源: 題型:計(jì)算題
查看答案和解析>>
科目:高中物理 來(lái)源: 題型:計(jì)算題
查看答案和解析>>
科目:高中物理 來(lái)源: 題型:計(jì)算題
查看答案和解析>>
科目:高中物理 來(lái)源: 題型:選擇題
A. | 粒子的速度v=$\frac{B}{E}$ | |
B. | 若粒子束變?yōu)樨?fù)粒子,別粒子軌跡一定發(fā)生偏折 | |
C. | 當(dāng)v′>v時(shí),粒子向下偏轉(zhuǎn) | |
D. | 當(dāng)v′<v時(shí),粒子向下偏轉(zhuǎn) |
查看答案和解析>>
科目:高中物理 來(lái)源: 題型:選擇題
A. | 無(wú)摩擦力作用 | |
B. | 有水平方向的摩擦力,但無(wú)法判定方向 | |
C. | 支持力大小為(M+m)g | |
D. | 支持力小于(M+m)g |
查看答案和解析>>
科目:高中物理 來(lái)源: 題型:選擇題
A. | 等于零 | B. | 大小為0.5mg,方向沿斜面向下 | ||
C. | 大小為$\frac{\sqrt{3}}{2}$mg,方向沿斜面向上 | D. | 大小為mg,方向沿斜面向上 |
查看答案和解析>>
科目:高中物理 來(lái)源: 題型:多選題
A. | 周期是0.01s | B. | 電壓的最大值是311V | ||
C. | 電壓的有效值是220V | D. | 電流的瞬時(shí)值表達(dá)式i=220sint(A) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com